Skip to main content
Log in

Quantifying Three-Dimensional Residual Stress Distributions Using Spatially-Resolved Diffraction Measurements and Finite Element Based Data Reduction

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Residual stress can play a significant role in the processing and performance of an engineered metallic component. The stress state within a polycrystalline part can vary significantly between its surface and its interior. To measure three-dimensional (3D) residual stress fields, a synchrotron x-ray diffraction-based experimental technique capable of non-destructively measuring a set of lattice strain pole figures (SPFs) at various surface and internal points within a component was developed. The resulting SPFs were used as input for a recently developed bi-scale optimization scheme McNelis et al. J Mech Phys Sol 61:428–1007 449 (2013) that combines crystal-scale measurements and continuum-scale constraints to determinethe 3D residual stress field in the component. To demonstrate this methodology, the 3D residual stress distribution was evaluated for an interference-fit sample fabricated from a low solvus high refractory (LSHR) polycrystalline Ni-base superalloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. In this section, we treat the incident and diffracted beams as lines (rays) that coincide with the averages of the real distributions. This simplifies the treatment but still applies to the general case.

  2. In other words, any point on the detector is mapped through the slit to exactly one point along zL.

  3. For a detailed treatment of the \(\sin ^{2} \Psi \) analysis for the determination of residual stress at a point, readers are referred to works by Lu [16] or Hauk et al. [17].

References

  1. Jacobus K, Devor R, Kapoor S (2000) Machining-induced residual stress: Experimentation and modeling. Transactions of the ASME 122:20–31. doi:10.1115/1.538906

    Google Scholar 

  2. Hosford WF, Caddell R (1993) Metal forming. PTR Prentice Hall

  3. Kobayashi M, Matsuia T, Murakami Y (1998) Mechanism of creation of compressive residual stress by shot peening. Int J Fatigue 20:351–357. doi:10.1016/S0142-1123(98)00002-4. http://www.sciencedirect.com/science/article/pii/S0142112398000024

    Article  Google Scholar 

  4. Buchanan DJ, John R (2008) Relaxation of shot-peened residual stresses under creep loading. Scr Mater 59:286–289. doi:10.1016/j.scriptamat.2008.03.021

    Article  Google Scholar 

  5. Shigley J, Mischke C, Budynas R, Nisbett J (2008) Shigley’s Mechanical Engineering Design, 8th edn. McGraw-Hill

  6. Staron P, Cihak U, Stockinger M, Clemens H (2007) Characterization of residual stresses in in 718 turbine discs by neutron diffraction and finite element modeling. J Neutron Res 15:185–192. doi:10.1080/10238160802399597. http://iospress.metapress.com/content/vr74251r1096u348/

    Article  Google Scholar 

  7. Albertini G, Bruno G, Dunn B, Fiori F, Reimers W, Wright J (1997) Comparative neutron and x-ray residual stress measurements on al-2219 welded plate. Mater Sci Eng A 224:157–165. doi:10.1016/S0921-5093(96)10546-3, http://www.sciencedirect.com/science/article/pii/S0921509396105463

    Article  Google Scholar 

  8. Pratihar S, Ganguly S, James J, Fitzpatrick M, Edwards L (2007) Non-destructive determination of the 3d residual stress in a aa7050 upper wing skin-stringer panel using neutron diffraction. J Neutron Res 15:293–301. doi:10.1080/10238160701374139.

    Article  Google Scholar 

  9. Bell T, Sun Y (1991) Plasma surface engineering of low alloy steel. Mater Sci Eng A 140:419–434. ISSN 0921-5093 doi:10.1016/0921-5093(91)90458-Y, http://www.sciencedirect.com/science/article/pii/092150939190458Y

    Article  Google Scholar 

  10. McNelis K, Dawson P, Miller M (2013) A two-scale methodology for determining the residual stresses in polycrystalline solids using high energy x-ray diffraction data. J Mech Phys Sol 61:428–449. doi:10.1016/j.jmps.2012.09.015. http://www.sciencedirect.com/science/article/pii/S0022509612002086

    Article  Google Scholar 

  11. Heinz A, Neumann P (1991) Representation of orientation and disorientation data for cubic, hexagonal, tetragonal and orthorhombic crystals. Acta Crystallogr A: Found Crystallogr A47:780–789. doi:10.1107/S0108767391006864. http://scripts.iucr.org/cgi-bin/paper?bx0517

    Article  MathSciNet  Google Scholar 

  12. Kumar A, Dawson PR (1998) Modeling crystallographic texture evolution with finite elements over neo-eulerian orientation spaces. Comput Methods Appl Mech 153:259–302. doi:10.1016/S0045-7825(97)00072-8. ISSN 0045-7825. http://www.sciencedirect.com/science/article/pii/S0045782597000728

    Article  MATH  Google Scholar 

  13. Demir E (2012) Determination of depth-resolved residual stress using lattice strain pole figure measurements. Computer Methods in Applied Mechanics and Engineering, in press, Elsevier, Amsterdam

  14. Allen A, Hutchings M, Windsor C, Andreani C (1985) Neutron diffraction methods for the study of residual stress fields. Adv Phys 34(4):445–473. doi:10.1080/00018738500101791. http://www.tandfonline.com/doi/abs/10.1080/00018738500101791

    Article  Google Scholar 

  15. Noyan IC, Cohen JB (1987) Residual stress : Measurement by Diffraction and Interpretation. Spinger-Verlag

  16. Lu J (1996) Handbook of Measurement of Residual Stresses. The Fairmont Press

  17. Hauk V (1997) Structural and residual stress analysis by nondestructive methods: Evaluation - Application - Assessment, 1st edn. Elsevier Science, Amsterdam

  18. Fitzpatrick M, Lodini A (eds.) (2003) Analysis of residual stress by diffraction using neutron and synchrotron radiation. Taylor and Francis, UK

  19. Martins R, Honkimaki V (2003) Depth resolved strain and phase mapping of dissimilar friction stir welds using high energy synchrotron radiation. Texture and Microstruct 35:145–152

    Article  Google Scholar 

  20. Chen H, Yao Y, Kysar J (2004) Spatially resolved characterization of residual stress induced by micro scale laser shock peening. J Manuf Sci Eng 126(2):226–236. doi:10.1115/1.1751189

    Article  Google Scholar 

  21. Jun TS, Hofmann F, Belnoue J, Song X, Hofmann M, Korsunsky AM (2009) Triaxial residual strains in a railway rail measured by neutron diffraction. J Strain Anal 44(7):563–568. doi:10.1243/03093247JSA545

    Article  Google Scholar 

  22. Hutchings MT, Withers PJ, Holden TM, Lorentzen T (2005) Introduction to the characterization of residual stress by neutron diffraction. CRC Press

  23. Krawitz ADNeutron strain measurement. Mater Sci Technol 27(3):589–603 (2011-03-01T00:00:00). doi:10.1179/1743284710Y.0000000029. http://www.ingentaconnect.com/content/maney/mst/2011/00000027/00000003/art00001

  24. Prevéy PS (1986) Metals Handbook, chap. X-ray diffraction residual stress techniques. American Society for Metals. pp. 380–392.

  25. Menig R, Pintschovius L, Schulze V, Voehringer O (2001) Depth profiles of macro residual stresses in thin shot peened steel plates determined by x-ray and neutron diffraction. Scr Mater 45:977–983. doi:10.1016/S1359-6462(01)01063-6. http://www.sciencedirect.com/science/article/pii/S1359646201010636

    Article  Google Scholar 

  26. Nielsen S, Wolf A, Poulsen H, Ohler M, Lienert U, Owen R (2000) A conical slit for three-dimensional xrd mapping. J Synchrotron Radiat 7:103–109. doi:10.1107/S0909049500000625. http://scripts.iucr.org/cgi-bin/paper?S0909049500000625

    Article  Google Scholar 

  27. Wanner A, Dunand DC (2000) Synchrotron x-ray study of bulk lattice strains in externally loaded cu-mo composites. Metall and Mater Trans A Phys Metall Mater 31(11):2949–2962. doi:10.1007/BF02830344

    Article  Google Scholar 

  28. Martins R, Lienert U, Margulies L, Pyzalla A (2001) Residual strain tensor determination within highly plastically deformed torsion samples using high energy synchrotron radiation. J Neutron Res 9

  29. Withers P, Webster P (2001) Neutron and synchrotron x-ray strain scanning. Strain 37:19–33. doi:10.1111/j.1475-1305.2001.tb01216.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1475-1305.2001.tb01216.x/abstract

    Article  Google Scholar 

  30. Miller MP, Bernier JV, Park JS, Kazimirov A (2005) Experimental measurement of lattice strain pole figures using synchrotron x rays. Rev Sci Instrum 76:113903. doi:10.1063/1.2130668. http://rsi.aip.org/resource/1/rsinak/v76/i11/p113903_s1

    Article  Google Scholar 

  31. Korsunsky A, Liu J, Golshan M, Dini D, Zhang S, Vorster W (2006) Measurement of residual elastic strains in a titanium alloy using high energy synchrotron x-ray diffraction. Exp Mech 46:519–529. doi:10.1007/s11340-006-8250-2

    Article  Google Scholar 

  32. Bernier J, Park JS, Pilchak A, Glavicic M, Miller M (2008) Measuring stress distributions in ti-6al-4v using synchrotron x-ray diffraction. Metall Mater Trans A 39:3120–3133. doi:10.1007/s11661-008-9639-6

    Article  Google Scholar 

  33. Wang Y, Lin Peng R, McGreevy R (2001) A novel method for constructing the mean field of grain-orientation-dependent residual stress. Phil Mag 81(3):153–163. doi:10.1080/09500830010017088

    Article  Google Scholar 

  34. Pang JWL, Holden T, Wright J, Mason T (2000) The generation of intergranular strains in 309h stainless steel under uniaxial loading. Acta Mater 48:1131–1140. doi:10.1016/S1359-6454(99)00382-1. http://www.sciencedirect.com/science/article/pii/S1359645499003821

    Article  Google Scholar 

  35. Behnken H (2000) Strain-function method for the direct evaluation of intergranular strains and stresses. Phys Stat Sol 177:401–418. doi:10.1002/(SICI)1521-396X(200002)177:2<401::AID-PSSA401>3.0.CO;2-I

    Article  Google Scholar 

  36. Wang Y, Lin Peng R, Wang XL, McGreevy R (2002) Grain-orientation-dependent residual stress and the effect of annealing in cold-rolled stainless steel. Acta Mater 50:1717–1734. doi:10.1016/S1359-6454(02)00021-6. http://www.sciencedirect.com/science/article/pii/S1359645402000216

    Article  Google Scholar 

  37. Bernier JV, Miller MP (2006) A direct method for the determination of the mean orientation-dependent elastic strains and stresses in polycrystalline materials from strain pole figures. J Appl Crystallogr 39:358–368. doi:10.1107/S0021889806009873. http://scripts.iucr.org/cgi-bin/paper?cg5029

    Article  Google Scholar 

  38. Bunge H (1982) Texture analysis in materials science - Mathematical Methods. Butterworths

  39. Lienert U, Martins R, Grigull S, Pinkerton M, Poulsen H, Kvick A (2000) High spatial resolution strain measurements within bulk materials by slit-imaging. In: Matematica Research Society Symposium Proceedings, vol. 590

  40. Gabb TP, Gayda J, Telesman J, Kantzos PT (2005) Thermal and mechanical property characterization of the advanced disk alloy lshr. Tech. rep., NASA. NASA/TM2005-213645

  41. Sabol GP, Stickler R (1969) Microstructure of nickel-based superalloys. Phys Status Solidi B Basic Solid State Phys 35:11–52. doi:10.1002/pssb.19690350102. http://onlinelibrary.wiley.com/doi/10.1002/pssb.19690350102/abstract

    Article  Google Scholar 

  42. Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties. J Propuls Power 22:361–374. doi:10.2514/1.18239

    Article  Google Scholar 

  43. Sims C (1987) Superalloys: Genesis and character. In: Sims C, Stoloff N, Hagel W (eds) Superalloys II, chap. 1. Wiley InterScience, hoboken, pp 3–26

    Google Scholar 

  44. Cullity BD, Stock SR (2001) Elements of X-ray Diffraction. Prentice Hall

  45. Said A, Shastri S (2010) Silicon saw-tooth refractive lens for high-energy x-rays made using a diamond saw. J Synchrotron Radiat 17:425–427. doi:10.1107/S0909049510003584. http://scripts.iucr.org/cgi-bin/paper?bf5028

    Article  Google Scholar 

  46. Lee J, Aydiner C, Almer J, Bernier J, Chapman K, Chupas P, Haeffner D, Kump K, Lee PL, Lienert U, Miceli A, Vera G (2008) Synchrotron applications of an amorphous silicon flat-panel detector. J Synchrotron Radiat 15:477–88. doi:10.1016/j.nima.2007.08.103

    Article  Google Scholar 

  47. Schuren JC, Miller M (2011) Quantifying the uncertainty of synchrotron-based lattice strain measurements. J Strain Anal 46:663–681. doi:10.1177/0309324711411553. http://sdj.sagepub.com/content/46/7/663.abstract

    Article  Google Scholar 

  48. Hosford WF (1993) Mechanical behavior of materials. Oxford University Press

  49. Bernier JV, Miller MP, Park JS, Lienert U (2008) Quantitative stress analysis of recrystallized ofhc cu subject to deformation in situ. J Eng Mater Technol 130:021, 021. doi:10.1115/1.2870234

    Google Scholar 

  50. Withers PJ, Preuss M, Steuwer A, Pang JWL (2007) Methods for obtaining the strain-free lattice parameter when using diffraction to determine residual stress. J Appl Crystallogr 40:891–904. doi:10.1107/S0021889807030269. http://scripts.iucr.org/cgi-bin/paper?ks5141

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the U.S. Air Force Office of Scientific Research Multi-Scale Structural Mechanics Program under contract number FA9550-09-1-0642. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC02-06CH11357. Professor Jim Williams of the Ohio State University is gratefully acknowledged for motivation and guidance of this work. The LSHR material used in this work was provided by Dr. T. J. Turner at the Air Force Research Laboratory (AFRL). The DPLAB Polycrystal Library (OdfPf) at Cornell University was used extensively for this work ( http://anisotropy.mae.cornell.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JS., Lienert, U., Dawson, P.R. et al. Quantifying Three-Dimensional Residual Stress Distributions Using Spatially-Resolved Diffraction Measurements and Finite Element Based Data Reduction. Exp Mech 53, 1491–1507 (2013). https://doi.org/10.1007/s11340-013-9771-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9771-0

Keywords

Navigation