Skip to main content
Log in

Fatigue Life Estimation for an NBR Rubber and an Expanded Polyurethane

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we deal with the mechanical behavior of elastomeric materials subjected to high cyclic loading in cases of high strain. First, a methodology for material parameter identification is used for a constitutive visco-hyperelastic law with discontinuous damage, modeling the Mullins effect. Then a fatigue model characterized by a strain energy density-based criterion is proposed and implemented in the finite element code, Code-Aster [1]. Two kinds of elastomer are considered, an incompressible rubber and an expanded compressible polyurethane. Cyclic tensile tests were performed to identify material fatigue parameters. Finally, a numerical application using a finite element model is presented. This model is a plate perforated by a ∅6 mm hole for the first sample and a ∅10 mm hole for the second one. The results obtained from the finite element model are compared to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. CODE-ASTER (2011) http://www.code-aster.org

  2. Bouchart V, Brieu M, Kondo D, Nait-Abdelaziz M (2007) Macroscopic behavior of a reinforced elastomer: micromechanical modelling and validation. Méc Indust 8(3):199–205

    Article  Google Scholar 

  3. Miehe C (1995) Discontinuous and continuous damage evolution in ogden-type large-strain elastic materials. Eur J Mech A Solid 14(5):697–720

    MATH  Google Scholar 

  4. Chagnon G, Verron E, Gornet L, Marckmann G, Charrier P (2004) On the relevance of continuum damage mechanics as applied to the mullins effect in elastomers. J Mech Phys Solid 52(7):1627–1650

    Article  MATH  Google Scholar 

  5. Miehe C, Goektepe S, Lulei F (2004) A micro-macro approach to rubber-like materials part i the non-affine micro-sphere model of rubber elasticity. J Mech Phys Solid 52(11):2617–2660

    Article  MATH  Google Scholar 

  6. Benkahla J, Baranger T, Issartel J (2012) Experimental and numerical simulation of elastomeric outsole bending. Exp Mech 52:1461–1473

    Article  Google Scholar 

  7. Saintier N, Cailletaud G, Piques R (2006) Crack initiation and propagation under multiaxial fatigue in a natural rubber. Int J Fatig 28(1):61–72

    Article  Google Scholar 

  8. Ayoub G (2010) Comportment en grandes déformations et fatigue des polymères : modélisation constitutive et prédiction de la durée de vie en fatigue. PhD thesis, Université Lille 1

  9. Bennani A (2006) Elaboration, comportement et durée de vie en fatigue du caoutchouc naturel renforcé de silice. PhD thesis, Ecole des Mines de Paris

  10. Mars WV (2001) Multiaxial fatigue of rubber. PhD thesis, The university of Toledo

  11. Mars W, Fatemi A (2002) A literature survey on fatigue analysis approaches for rubber. Int J Fatig 24(9):949–961

    Article  MATH  Google Scholar 

  12. Shigley JE (1972) Mechanical engineering design. McGraw-Hill, New-York

    Google Scholar 

  13. Bompas-Smith JH (1973) Mechanical survival: the use of reliability data. RHW Book, Maidenhead Berkshire-England

  14. Lalanne C (1999) Vibrations et chocs mécaniques Tome 4: dommage par fatigue. Hermes, Paris

    MATH  Google Scholar 

  15. Raoult I (2005) Structure élastomère sous chargement cyclique. PhD thesis, Ecole Polytechnique

  16. Kim W, Lee H, Kim J, Koh SK (2004) Fatigue life estimation of an engine rubber mount. Int J Fatig 26(5):553–560

    Article  Google Scholar 

  17. Robisson A (2000) Mechanical bevavior of viscoelastic and damage induced elastomers (SBR and PU), fatigue lifetime prediction. PhD thesis, Ecole des Mines de Paris

  18. Verron E, Andriyana A (2008) Definition of a new predictor for multiaxial fatigue crack nucleation in rubber. J Mech Phys Solid 56(2):417–443

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang B, Lu H, Kim G-h (2002) A damage model for the fatigue life of elastomeric materials. Mech Mater 34(8):475–483

    Article  Google Scholar 

  20. Cantournet S, Desmorat R (2003) Thermodynamics modelling of internal friction and hysteresis of elastomers. Comptes Rendus Mécanique 331(4):265–270

    Article  MATH  Google Scholar 

  21. Lemaitre J, Chaboche J (2004) Mécanique des matériaux solides. Dunod, Paris

    Google Scholar 

  22. Diehl T (1995) Two-dimensional and three-dimensional analysis of nonlinear nip mechanics with hyperelastic material formulations. PhD thesis, University of Rochester

  23. Schrodt M, Benderoth G, Khhorn A, Silber G (2005) Hyperelastic description of polymer soft foams at finite deformations. Tech Mech 25:3–4

    Google Scholar 

  24. Promma N, Raka B, Grdiac M, Toussaint E, Cam JBL, Balandraud X, Hild F (2009) Application of the virtual fields method to mechanical characterization of elastomeric materials. Int J Solid Struct 46(34):698–715

    Article  MATH  Google Scholar 

  25. Guélon T, Toussaint E, Cam JBL, Promma N, Grédiac M (2009) A new characterisation method for rubber. Polymer Test 28(7):715–723

    Article  Google Scholar 

  26. Palmieri G, Sasso M, Chiappini G, Amodio D (2011) Virtual fields method on planar tension tests for hyperelastic materials characterisation. Strain 47:196–209

    Article  Google Scholar 

Download references

Acknowledgments

This paper was written in the framework of a project called SN2C, Simulation Numérique Conception Chaussure, funded by the Rhone-Alpes Region and the DGCIS: Direction Générale de la Compétitivité de l’Industrie et des Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Baranger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkahla, J., Baranger, T.N. & Issartel, J. Fatigue Life Estimation for an NBR Rubber and an Expanded Polyurethane. Exp Mech 53, 1383–1393 (2013). https://doi.org/10.1007/s11340-013-9749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9749-y

Keywords

Navigation