Skip to main content
Log in

In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper studies. This paper presents an experimental investigation technique to perform volume kinematic measurements in composite materials. The association of X-ray micro-computed tomography acquisitions and Digital Volume Correlation (DVC) technique allows the measurement of displacements and deformations in the whole volume of composite specimen. To elaborate the latter, composite fibres and epoxy resin are associated with metallic particles to create contrast during X-ray acquisition. A specific in situ loading device is presented for three-point bending tests, which enables the visualization of transverse shear effects in composite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Berthelot JM (2005) Matériaux composites - comportement mécanique et analyse des structures, 4ème Edition. Editions TEC et DOC

  2. Karama M, Afaq K, Mistou S (2009) A new theory for laminated composite plates. J Mater Des Appl 223:53–62

    Google Scholar 

  3. Mantari J, Oktem A, Guedes Soares C (2011) Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory. Compos Struct 94:37–49

    Article  Google Scholar 

  4. Karama M, Afaq KS, Mistou S (2003) Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int J Solids Struct 40:1525–1546

    Article  MATH  Google Scholar 

  5. Reissner E (1945) Reflection on the theory of elastic plates. J Appl Mech 38:1453–1464

    MathSciNet  Google Scholar 

  6. Kirchhoff G (1850) Uber das gleichgewicht und die bewegung einer elastischen schreitbe. Reine Angew Math 40:51–58

    Article  MATH  Google Scholar 

  7. Reddy J (1984) A simple high-order theory of laminated composite plate. J Appl Mech 51:745–752

    Article  MATH  Google Scholar 

  8. Touratier M (1991) An efficient standard plate theory. Int J Eng Sci 29:901–916

    Article  MATH  Google Scholar 

  9. Dufort L, Grédiac M, Surrel Y (2001) Experimental evidence of the cross-section warping in short composite beams under three point bending. Compos Struct 51:37–47

    Article  Google Scholar 

  10. Brault R, Germaneau A, Doumalin P, Dupre J, Fazzini M, Mistou S (2011) Evaluation of transverse shear in laminated composite plates by digital volume correlation

  11. Gates M, Lambros J, Heath M (2010) Towards high performance digital volume correlation. Exp Mech 51:491–507

    Article  Google Scholar 

  12. Salvo L, Suéry M, Marmottant A, Limodin N, Bernard D (2010) 3d imaging in material science: application of x-ray tomography. C R Phys 11:641–649

    Article  Google Scholar 

  13. Buffière J, Proudhon H, Ferrie E, Ludwig W, Maire E, Cloetens P (2005) Three dimensional imaging of damage in structural materials using high resolution micro-tomography. Nucl Instrum Methods Phys Res, Sect B 238:75–82

    Article  Google Scholar 

  14. Tan K, Watanabe N, Iwahori Y (2011) X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Compos B: Eng 42:874–884

    Article  Google Scholar 

  15. Schilling PJ, Karedla BPR, Tatiparthi AK, Verges MA, Herrington PD (2005) X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Compos Sci Technol 65:2071–2078

    Article  Google Scholar 

  16. Latil P, Orgéas L, Geindreau C, Dumont P, Rolland du Roscoat S (2011) Towards the 3d in situ characterisation of deformation micro-mechanisms within a compressed bundle of fibres. Compos Sci Technol 71:480–488

    Article  Google Scholar 

  17. Sutton M, Wolters W, Peters W, Ranson W, McNeill S (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1:133–139

    Article  Google Scholar 

  18. Germaneau A (2007) Développement de techniques de mesure dans le volume: Photoélasticimétrie 3D par découpage optique et corrélation volumique par tomographie optique et rayons X. Application à l’étude des effets mécaniques 3D dans les structures et les biomatériaux. PhD Thesis. Université de Poitiers

  19. Germaneau A, Doumalin P, Dupre J (2008) Comparison between x-ray micro-computed tomography and optical scanning tomography for full 3d strain measurement by digital volume correlation. NDT E Int 41:9

    Article  Google Scholar 

  20. Bay B, Smith T, Fyhrie D, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using x-ray tomography. Exp Mech 39:217–226

    Article  Google Scholar 

  21. Buffière J, Maire E, Adrien J, Masse J, Boller E (2010) In situ experiments with x ray tomography: an attractive tool for experimental mechanics. Exp Mech 50:289–305

    Article  Google Scholar 

  22. Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37:1313–1320

    Article  Google Scholar 

  23. Lenoir N (2006) Comportement mécanique et rupture dans les roches argileuses étudiés par micro-tomographie à rayons X. PhD Thesis. Université de Grenoble I

  24. Forsberg F, Sjödahl M, Mooser R, Hack E, Wyss P (2010) Full three-dimensional strain measurements on wood exposed to three-point bending: analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46:47–60

    Article  Google Scholar 

  25. Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from x-ray computed tomography of solid foam. Compos A: Appl Sci Manuf 39:1253–1265

    Article  Google Scholar 

  26. Feldkamp L, Davis L, Kress J (1984) Practical cone-beam algorithm. J Opt Soc Am A1:612–619

    Article  Google Scholar 

  27. Bornert M, Brémand F, Doumalin P, Dupré J, Fazzini M et al (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49:353–370

    Article  Google Scholar 

  28. Germaneau A, Doumalin P, Dupre J (2007) 3d strain field measurement by correlation of volume images using scattered light_recording of images and choice of marks. Strain 43:207–218

    Article  Google Scholar 

  29. Germaneau A, Doumalin P, Dupré J (2007) Full 3d measurement of strain field by scattered light for analysis of structures. Exp Mech 47:523–532

    Article  Google Scholar 

  30. Sutton M, McNeill S, Jang J, Babai M (1988) Effects of subpixel image restoration on digital correlation error estimates. Opt Eng 27:870–877

    Article  Google Scholar 

  31. Choi S, Shah S (1997) Measurement of deformations on concrete subjected to compression using image correlation. Exp Mech 37:307–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brault, R., Germaneau, A., Dupré, J.C. et al. In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation. Exp Mech 53, 1143–1151 (2013). https://doi.org/10.1007/s11340-013-9730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9730-9

Keywords

Navigation