Skip to main content
Log in

A Force Domain Analog-to-Digital Converter Applied to Microscale Tensile Test

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Mechanical characterization of sub-micron thin films or similar small scale structures have been a continuous challenge to the mechanics community due to the difficulty in accurately quantizing the applied load and the resulted deformation. In this paper, a new force-domain analog-to-digital converter (F-D ADC) created from the concept of Flash ADC in electronics is developed to perform thin film tensile tests. The key component of the F-D ADC is a quantizer-array of microfabricated buckling beams of varying lengths. During testing, the tensile force applied in the test specimen is converted to the compressive force in the quantizer beam array and digitized by using the critical buckling load of the beams as they progressively buckle with increasing force amplitude. The deformation of the specimen is controlled by the piezoelectric actuator. Successful testing of (110) single crystal silicon and titanium/nickel (Ti/Ni) multilayer thin film specimens demonstrated the feasibility of this novel F-D ADC concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sharpe WN, Bagdahn J, Jackson K, Coles G (2003) Tensile testing of MEMS materials—recent progress. J Mater Sci 38(20):4075–4079

    Article  Google Scholar 

  2. Pharr GM, Oliver WC (1992) Measurement of thin-film mechanical-properties using nanoindentation. MRS Bull 17(7):28–33

    Google Scholar 

  3. Neubrand A, Hess P (1992) Laser generation and detection of surface acoustic-waves—elastic properties of surface-layers. J Appl Phys 71(1):227–238

    Article  Google Scholar 

  4. Kiesewetter L, Zhang JM, Houdeau D, Steckenborn A (1992) Determination of Young moduli of micromechanical thin-films using the resonance method. Sensors Actuators A Phys 35(2):153–159

    Article  Google Scholar 

  5. Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118

    Article  Google Scholar 

  6. Sharpe WN (1968) Interferometric strain gage. Exp Mech 8(4):164

    Article  Google Scholar 

  7. Sharpe WN (1982) Applications of the interferometric strain displacement gauge. Opt Eng 21(3):483–488

    Article  Google Scholar 

  8. Sharpe WN, Yuan B, Edwards RL (1997) A new technique for measuring the mechanical properties of thin films. J Microelectromech Syst 6(3):193–199

    Article  Google Scholar 

  9. Sharpe WN, Turner KT, Edwards RL (1999) Tensile testing of polysilicon. Exp Mech 39(3):162–170

    Article  Google Scholar 

  10. LaVan DA, Sharpe WN (1999) Tensile testing of microsamples. Exp Mech 39(3):210–216

    Article  Google Scholar 

  11. Sharpe WN (2003) Murray lecture—Tensile testing at the micrometer scale: opportunities in experimental mechanics. Exp Mech 43(3):228–237

    MathSciNet  Google Scholar 

  12. Hemker KJ, Sharpe WN (2007) Microscale characterization of mechanical properties. Annu Rev Mater Res 37:93–126

    Article  Google Scholar 

  13. Tsuchiya T, Tabata O, Sakata J, Taga Y (1998) Specimen size effect of tensile strength of surface-micromachined polycrystalline silicon thin films. J Microelectromech Syst 7(1):106–113

    Article  Google Scholar 

  14. Chasiotis I, Knauss WG (2002) A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Exp Mech 42(1):51–57

    Article  Google Scholar 

  15. Knauss WG, Chasiotis I, Huang Y (2003) Mechanical measurements at the micron and nanometer scales. Mech Mater 35(3–6):217–231

    Article  Google Scholar 

  16. Haque MA, Saif MTA (2001) Microscale materials testing using MEMS actuators. J Microelectromech Syst 10(1):146–152

    Article  Google Scholar 

  17. Haque MA, Saif MTA (2002) In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech 42(1):123–128

    Article  Google Scholar 

  18. Haque MA, Saif MTA (2002) Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sensors Actuators A Phys 97–8:239–245

    Article  Google Scholar 

  19. Haque MA, Saif MTA (2002) Mechanical behavior of 30–50 mn thick aluminum films under uniaxial tension. Scr Mater 47(12):863–867

    Article  Google Scholar 

  20. Haque MA, Saif MTA (2003) A review of MEMS-based microscale and nanoscale tensile and bending testing. Exp Mech 43(3):248–255

    Article  Google Scholar 

  21. Haque MA, Saif MTA (2005) In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope. J Mater Res 20(7):1769–1777

    Article  Google Scholar 

  22. Haque MA, Saif MTA (2005) Thermo-mechanical properties of nano-scale freestanding aluminum films. Thin Solid Films 484(1–2):364–368

    Article  Google Scholar 

  23. Zhu Y, Moldovan N, Espinosa HD (2005) A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl Phys Lett 86(1)

  24. Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J Micromech Microeng 16(2):242–253

    Article  Google Scholar 

  25. Lu SN, Dikin DA, Zhang SL, Fisher FT, Lee J, Ruoff RS (2004) Realization of nanoscale resolution with a micromachined thermally actuated testing stage. Rev Sci Instrum 75(6):2154–2162

    Article  Google Scholar 

  26. Maloberti F (2007) Data converters. Springer, dordrecht

    Google Scholar 

  27. Waltari ME, Halonen KAI (2002) Circuit techniques for low-voltage and high-speed A/D converters. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  28. Davis JR (2004) Tensile Testing, 2nd edn. ASM International, Materials Park

    Google Scholar 

  29. Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? J Microelectromech Syst 19(2):229–238

    Article  Google Scholar 

  30. ASM-International (2002) Atlas of stress-strain curves, 2nd edn. ASM International, Materials Park

    Google Scholar 

  31. Gere JM, Timoshenko SP (1997) Mechanics of materials, 4th edn. Cengage Learning, Toronto

    Google Scholar 

  32. Lindberg U, Soderkvist J, Lammerink T, Elwenspoek M (1993) Quasi-buckling of micromachined beams. J Micromech Microeng 3(4):183–186

    Article  Google Scholar 

  33. Chiao M, Lin L (1997) Microactuators based on electrothermal expansion of clamped—clamped beams. In 1997 ASME International Mechanical Engineering Congress and Exposition, Proceedings of Micro-Electro-Mechanical Systems (MEMS). Dallas, Texas

  34. Fang W, Wickert JA (1994) Post buckling of micromachined beams. J Micromech Microeng 4(3):116–122

    Article  Google Scholar 

  35. Saif MTA (2000) On a tunable bistable MEMS—theory and experiment. J Microelectromech Syst 9(2):157–170

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, WF., Wang, J. A Force Domain Analog-to-Digital Converter Applied to Microscale Tensile Test. Exp Mech 53, 795–806 (2013). https://doi.org/10.1007/s11340-012-9693-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-012-9693-2

Keywords

Navigation