Skip to main content
Log in

Membrane Curvatures and Stress-strain Full Fields of Axisymmetric Bulge Tests from 3D-DIC Measurements. Theory and Validation on Virtual and Experimental results

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The bulge test is mostly used to analyze equibiaxial tensile stress state at the pole of inflated isotropic membranes. Three-dimensional digital image correlation (3D-DIC) technique allows the determination of three-dimensional surface displacements and strain fields. In this paper, a method is proposed to determine also the membrane stress tensor fields for in-plane isotropic materials, independently of any constitutive equation. Stress-strain state is then known at any surface point which enriches greatly experimental data deduced from the axisymmetric bulge tests. Our method consists, first in calculating from the 3D-DIC experimental data the membrane curvature tensor at each surface point of the bulge specimen. Then, curvature tensor fields are used to investigate axisymmetry of the test. Finally in the axisymmetric case, membrane stress tensor fields are determined from meridional and circumferential curvatures combined with the measurement of the inflating pressure. Our method is first validated for virtual 3D-DIC data, obtained by numerical simulation of a bulge test using a hyperelastic material model. Afterward, the method is applied to an experimental bulge test performed using as material a silicone elastomer. The stress-strain fields which are obtained using the proposed method are compared with results of the finite element simulation of this overall bulge test using a neo-Hookean model fitted on uniaxial and equibiaxial tensile tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Avril S, Bonnet M, Bretelle A, Grediac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E et al (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48(4):381–402

    Article  Google Scholar 

  2. Treloar LRG (1944) Strains in an inflated rubber sheet and the mechanism of bursting. Trans Inst Rubber Ind 19:201–212

    Google Scholar 

  3. Brown WF, Thompson F (1949) Strength and failure characteristics of metal membranes in circular bulging. Trans Am Soc Mech Eng 71:575–585

    Google Scholar 

  4. Tsakalakos T (1981) The bulge test—A comparison of theory and experiment for isotropic and anisotropic films. Thin Solid Films 75:293–305

    Article  Google Scholar 

  5. Mitchell JS, Zorman CA, Kicher T, Roy S, Mehregany M (2003) Examination of bulge test for determining residual stress, Young’s modulus, and Poisson’s ratio of 3C-SiC thin films. J Aerosp Eng 16(2):46–54

    Article  Google Scholar 

  6. Seshaiyer P, Hsu FPK, Shah AD, Kyriacou SK, Humphrey JD (2001) Multiaxial mechanical behavior of human saccular aneurysms. Comput Methods Biomech Biomed Eng 4(3):281–289

    Article  Google Scholar 

  7. Miller CE (1979) Determination of elastic parameters for human fetal membranes. J Rheol 23:57–78

    Article  Google Scholar 

  8. Kriewall T, Akkas N, Bylski D, Melvin J, Work B (1983) Mechanical-behavior of fetal dura mater under large axisymmetric inflation. J Biomech Eng - T ASME 105(23):71–76

    Article  Google Scholar 

  9. Selby JC, Shannon MA (2007) Apparatus for measuring the finite load-deformation behavior of a sheet of epithelial cells cultured on a mesoscopic freestanding elastomer membrane. Rev Sci Instrum 78(9):094301

    Article  Google Scholar 

  10. Grolleau V, Gary G, Mohr D (2008) Biaxial testing of sheet materials at high strain rates using viscoelastic bars. Exp Mech 48:293–306

    Article  Google Scholar 

  11. Adkins JE, Rivlin RS (1952) Large elastic deformation of isotropic materials. IX. The deformation of thin shells. Philos Trans R Soc A244:505–532

    MathSciNet  Google Scholar 

  12. Hill R (1950) A theory of the plastic bulging of a metal diaphragm by lateral pressure. Philos Mag 41:1133–1142

    MathSciNet  MATH  Google Scholar 

  13. Ross E, Prager W (1954) On the theory of the bulge test. Q Appl Math 12:86–91

    MathSciNet  MATH  Google Scholar 

  14. Meunier L, Chagnon G, Favier D, Orgéas L, Vacher P (2008) Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber. Polym Test 27:765–777

    Article  Google Scholar 

  15. Sasso M, Palmieri G, Chiappini G, Amodio D (2008) Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym Test 27:995–1004

    Article  Google Scholar 

  16. Grolleau V, Louche H, Delobelle V, Penin A, Rio G, Liu Y, Favier D (2011) Assessment of tension-compression asymmetry of NiTi using circular bulge testing of thin plates. Scr Mater 65(4):347–350

    Article  Google Scholar 

  17. Dudderar T, Koch F, Doerries E (1977) Measurement of the shapes of foil bulge-test samples. Exp Mech 17:133–140

    Article  Google Scholar 

  18. Wineman AS (1976) Large axisymmetric inflation of a nonlinear viscoelastic membrane by lateral pressure. Trans Soc Rheol 20(23):203 1976

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang W, Feng W (1970) On axisymmetrical deformations of nonlinear membranes. J Appl Mech 37:1002–1011

    Article  MATH  Google Scholar 

  20. Klingbeil W, Shield R (1964) Some numerical investigations on empirical strain energy functions in the large axisymmetric extensions of rubber membranes. Z Angew Math Phys 15:608–629

    Article  Google Scholar 

  21. Wineman AS (1978) On axisymmetric deformations of nonlinear viscoelastic membranes. J Non-Newton Fluid Mech 4(23):249–260

    Article  MATH  Google Scholar 

  22. Feng W (1992) Viscoelastic behavior of elastomeric membranes. J Appl Mech 59:29–34

    Article  Google Scholar 

  23. Hsu F, Liu A, Downs J, Rigamonti D, Humphrey J (1995) A triplane video-based experimental system for studying axisymmetrically inflated biomembranes. IEEE Trans Bio-Med Eng 42:442–450

    Article  Google Scholar 

  24. Luo P, Chao Y, Sutton M, Peters W (1993) Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33:123–132

    Article  Google Scholar 

  25. Sutton MA (2008) Digital image correlation for shape and deformation measurements. In: Springer handbook of experimental solid mechanics - Part C, pp. 565–600

  26. Sutton MA, Orteu J-J, Schreier HW (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York. doi:10.1007/978-0-387-78747-3

  27. Orteu JJ (2009) 3-D computer vision in experimental mechanics. Opt Lasers Eng 47(3–4):282–291

    Article  Google Scholar 

  28. Becker T, Splitthof K, Siebert T, Kletting P (2006) Error estimations of 3D digital image correlation measurements. Proc SPIE 6341:63410F. doi:10.1117/12.695277

    Article  Google Scholar 

  29. Schreier H, Sutton M (2002) Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech 42:303–310

    Article  Google Scholar 

  30. Carmo MP (1976) Differential geometry of curves and surfaces. Prentice-Hall Inc, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  31. Ciarlet P (2005) An introduction to differential geometry with applications to elasticity. Springer, Netherlands. doi:10.1007/s10659-005-4738-8

  32. Toponogov VA (2006) Differential geometry of curves and surfaces: a concise guide. Birkhäuser Boston

  33. Green A, Adkins J (1970) Large elastic deformation, 2nd edition. Clarendon Press, Oxford

    Google Scholar 

  34. Humphrey JD (1998) Computer methods in membrane biomechanics. Comput Methods Biomech Biomed Eng 1:171–210

    Article  Google Scholar 

  35. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592

    Article  MATH  Google Scholar 

  36. Kyriacou SK, Shah AD, Humphrey JD (1997) Inverse finite element characterization of nonlinear hyperelastic membranes. J Appl Mech 65:257–262

    Article  Google Scholar 

  37. Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Statist Data Anal 54(4):1167–1178

    Article  MathSciNet  MATH  Google Scholar 

  38. Orteu J-J, Bugarin F, Harvent J, Robert L, Velay V (2010) Multiple-camera instrumentation of a single point incremental forming process pilot for shape and 3D displacement measurements: methodology and results. Exp Mech 51:1–15

    Google Scholar 

  39. Machado G, Chagnon G, Favier D (2010) Analysis of the isotropic models of the mullins effect based on filled silicone rubber experimental results. Mech Mater 42(9):841–851

    Article  Google Scholar 

  40. Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362

    Article  Google Scholar 

  41. Treloar LRG (1943) The elasticity of a network of long chain molecules (I and II). Trans Faraday Soc 39:36–64; 241–246

    Article  Google Scholar 

  42. Guélon T, Toussaint E, Le Cam, J-B, Promma N, Grédiac M (2009) A new characterisation method for rubber. Polym Test 28(7):715–723

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank the French ANR for supporting this work through the project RAAMO (“Robot Anguille Autonome pour Milieux Opaques”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Favier.

Appendix

Appendix

MatLab routine used to evaluate the surface curvatures.

function [K, H, Ki, Kii] = scurvature (X, Y, Z, gs)

% scurvature compute gaussian, mean and principal curvatures of a surface

%

% [K, H, Ki, Kii] = scurvature (X, Y, Z, gs), where:

% − X, Y, Z are matrix of points on the surface.

% − gs specifies the spacing between points in every direction. (Default gs = 1)

% − K is the gaussian curvature.

% − H is the mean curvature.

% − Ki and Kii are minimum and maximum curvatures at each point.

%

% First Derivatives

[Xu, Xv] = gradient (X, gs);

[Yu, Yv] = gradient (Y, gs);

[Zu, Zv] = gradient (Z, gs);

% Second Derivatives

[Xuu, Xuv] = gradient (Xu, gs);

[Yuu, Yuv] = gradient (Yu, gs);

[Zuu, Zuv] = gradient (Zu, gs);

[Xuv, Xvv] = gradient (Xv, gs);

[Yuv, Yvv] = gradient (Yv, gs);

[Zuv, Zvv] = gradient (Zv, gs);

% Reshape 2D Arrays into vectors

Xu = Xu(:); Yu = Yu(:); Zu = Zu(:);

Xv = Xv(:); Yv = Yv(:); Zv = Zv(:);

Xuu = Xuu(:); Yuu = Yuu(:); Zuu = Zuu(:);

Xuv = Xuv(:); Yuv = Yuv(:); Zuv = Zuv(:);

Xvv = Xvv(:); Yvv = Yvv(:); Zvv = Zvv(:);

Xu = [Xu Yu Zu];

Xv = [Xv Yv Zv];

Xuu = [Xuu Yuu Zuu];

Xuv = [Xuv Yuv Zuv];

Xvv = [Xvv Yvv Zvv];

% First fundamental form coefficients (g11, g12, g22)

g11 = dot (Xu, Xu, 2);

g12 = dot (Xu, Xv, 2);

g22 = dot (Xv, Xv, 2);

% Normal vector (g3)

m = cross (Xu, Xv, 2);

p = sqrt (dot(m, m, 2));

g3 = m./[p p p];

% Second fundamental Coefficients of the surface (b11, b12, b22)

b11 = dot (Xuu, g3, 2);

b12 = dot (Xuv, g3, 2);

b22 = dot(Xvv, g3, 2);

[s, t] = size (Z);

% Gaussian Curvature (K)

K = (b11 . ∗ b22 − b12 .2)./(g11 . ∗ g22 − g12.2);

K = reshape (K, s, t);

% Mean Curvature (H)

H = (g11 . ∗ b22 + g22 . ∗ b11 − 2. ∗ g12. ∗ b12)./(2 ∗ (g11 . ∗ g22 − g12.2));

H = reshape (H, s, t);

%% Principal Curvatures.

Ki = H + sqrt (H.2 − K);

Kii = H − sqrt (H.2 − K);

% end scurvature

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, G., Favier, D. & Chagnon, G. Membrane Curvatures and Stress-strain Full Fields of Axisymmetric Bulge Tests from 3D-DIC Measurements. Theory and Validation on Virtual and Experimental results. Exp Mech 52, 865–880 (2012). https://doi.org/10.1007/s11340-011-9571-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9571-3

Keywords

Navigation