Skip to main content
Log in

Novel Technique for Static and Dynamic Shear Testing of Ti6Al4V Sheet

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Few shear test techniques exist that cover the range of strain rates from static to dynamic. In this work, a novel specimen geometry is presented that can be used for the characterisation of the shear behaviour of sheet metals over a wide range of strain rates using traditional tensile test devices. The main objectives during the development of the shear specimen have been 1) obtaining a homogeneous stress state with low stress triaxiality in the zone of the specimen subjected to shear and 2) appropriateness for dynamic testing. Additionally, avoiding premature specimen failure due to edge effects was aimed at. Most dimensional and practical constraints arose from the dynamic test in which the specimen is loaded by mechanical waves in a split Hopkinson tensile bar device. Design of the specimen geometry is based on finite element simulations using ABAQUS/Explicit. The behaviour of the specimen is compared with the more commonly used simple shear specimen with clamped grips. Advantages of the new technique are shown. The technique is applied to Ti6Al4V sheet. During the high strain rate experiments high speed photography and digital image correlation are used to obtain the local shear strain in the specimen. Comparison of experimental and numerical results shows good correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Tarigopula V, Hopperstad OS, Langseth M, Clausen AH, Hild F, Lademo OG, Eriksson M (2008) A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp Mech 48(2):181–196. doi:10.1007/s11340-007-9066-4

    Article  Google Scholar 

  2. Lademo OG, Engler O, Keller S, Berstad T, Pedersen KO, Hopperstad OS (2009) Identification and validation of constitutive model and fracture criterion for AlMgSi alloy with application to sheet forming. Mater Des 30(8):3005–3019. doi:10.1016/j.matdes.2008.12.020

    Article  Google Scholar 

  3. Rusinek A, Klepaczko JR (2001) Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int J Plast 17(1):87–115. doi:10.1016/S0749-6419(00)00020-6

    Article  Google Scholar 

  4. Klepaczko JR, Nguyen HV, Nowacki WK (1999) Quasi-static and dynamic shearing of sheet metals. Eur J Mech Solid 18(2):271–289. doi:10.1016/S0997-7538(99)80016-3

    Article  MATH  Google Scholar 

  5. Rauch EF (2009) Plastic behavior of metals at large strains: experimental studies involving simple shear. J Eng Mater Technol 131(1):011107 (011108pp). doi:10.1115/1.3030942

    Article  Google Scholar 

  6. Bouvier S, Haddadi H, Levee P, Teodosiu C (2006) Simple shear tests: experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. J Mater Process Tech 172(1):96–103. doi:1016/j.jmatprotec.2005.09.003

    Article  Google Scholar 

  7. Inal K, Wu PD, Neale KW (2002) Large strain behaviour of aluminium sheets subjected to in-plane simple shear. Model Simul Mater Sci Eng 10(2):237–252

    Article  Google Scholar 

  8. Bacroix B, Genevois P, Teodosiu C (1994) Plastic anisotropy in low-carbon steels subjected to simple shear with strain path changes. Eur J Mech Solid 13(5):661–675

    Google Scholar 

  9. Klepaczko JR (1994) An experimental-technique for shear testing at high and very high-strain rates—the case of a mild-steel. Int J Impact Eng 15(1):25–39

    Article  Google Scholar 

  10. Miyauchi K (1984) A proposal of a planar simple shear test in sheet metals. Sci Pap Inst Phys Chem Res 78(3):27–40

    Google Scholar 

  11. Gaspérini M, Pinna C, Swiatnicki W (1996) Microstructure evolution and strain localization during shear deformation of an aluminium alloy. Acta Mater 44(10):4195–4208. doi:10.1016/S1359-6454(96)00046-8

    Article  Google Scholar 

  12. Merle R, Zhao H (2004) Experimental study of sheet metals under dynamic double shear at large strains. Advances in Eng Plast and its Appl, Pts 1 and 2 274–276:787–792

    Google Scholar 

  13. Harding J, Huddart J (1980) The use of the double-notch shear test in determining the mechanical properties of uranium at very high rates of strain. In: Harding J (ed), pp 49–61

  14. Bonnet-Lebouvier AS, Klepaczko JR (2002) Numerical study of shear deformation in Ti-6Al-4V at medium and high strain rates, critical impact velocity in shear. Int J Impact Eng 27(7):755–769

    Article  Google Scholar 

  15. Chwalik P, Klepaczko JR, Rusinek A Impact shear-numerical analyses of ASB evolution and failure for Ti-6Al-4V alloy. In: 7th International Conference on Mechanical and Physical Behaviour of Materials Under Dynamic Loading, Oporto, Portugal, Sep 08–12 2003. pp 257–262. doi:10.1051/jp4:20030703

  16. Bouvier S, Gardey B, Haddadi H, Teodosiu C (2006) Characterization of the strain-induced plastic anisotropy of rolled sheets by using sequences of simple shear and uniaxial tensile tests. J Mater Process Tech 174(1–3):115–126. doi:10.1016/j.jmatprotec.2005.04.086

    Article  Google Scholar 

  17. Bao YB, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–98. doi:10.1016/j.ijmecsci.2004.02.006

    Article  Google Scholar 

  18. Carney KS, Pereira JM, Revilock DM, Matheny P (2009) Jet engine fan blade containment using an alternate geometry. Int J Impact Eng 36(5):720–728. doi:10.1016/j.ijimpeng.2008.10.002

    Article  Google Scholar 

  19. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc 62:676–700

    Article  Google Scholar 

  20. Verleysen P, Degrieck J (2004) Experimental investigation of the deformation of Hopkinson bar specimens. Int J Impact Eng 30(3):239–253. doi:10.1016/s0734-743x(03)00069-1

    Article  Google Scholar 

  21. Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D (2009) Assessment of measuring errors in DIC using deformation fields generated by plastic FEA. Optic Laser Eng 47(7–8):747–753. doi:10.1016/j.optlaseng.2009.03.007

    Article  Google Scholar 

  22. Bornert M, Brémand F, Doumalin P, Dupré JC, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu JJ, Robert L, Surrel Y, Vacher P, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49(3):353–370. doi:10.1007/s11340-008-9204-7

    Article  Google Scholar 

  23. Gsell C, Boni S, Shrivastava S (1983) Application of the plane simple shear test for determination of the plastic behavior of solid polymers at large strains. J Mater Sci 18(3):903–918

    Article  Google Scholar 

  24. Dey S, Borvik T, Hopperstad OS, Langseth M (2007) On the influence of constitutive relation in projectile impact of steel plates. Int J Impact Eng 34(3):464–486. doi:10.1016/j.ijimpeng.2005.10.003

    Article  Google Scholar 

  25. Coghe F, Rabet L, Kestens L (2006) Deformation mechanism of a commercial titanium alloy Ti6Al4V as a function of strain rate and initial texture. J Phys IV 134:845–850. doi:10.1051/jp4:2006134130

    Google Scholar 

  26. Kapoor R, Nemat-Nasser S (1998) Determination of temperature rise during high strain rate deformation. Mech Mater 27(1):1–12

    Article  Google Scholar 

  27. Ziolkowski A (2006) Simple shear test in identification of constitutive behaviour of materials submitted to large deformations - hyperelastic materials case. Eng Trans 54(4):251–269

    Google Scholar 

  28. Peirs J, Verleysen P, Van Paepegem W, Degrieck J (2011) Determining the stress-strain behaviour at large strains from high strain rate tensile and shear experiments. Int J Impact Eng, In Press, doi: 10.1016/j.ijimpeng.2011.01.004

  29. Dixit PM, Dixit US (2008) Modeling of metal forming and machining processes: by finite element and soft computing methods. Springer, London, ISBN-13: 9781848001886

    Google Scholar 

  30. Duchêne L, Lelotte T, Flores P, Bouvier S, Habraken AM (2008) Rotation of axes for anisotropic metal in FEM simulations. Int J Plast 24(3):397–427. doi:10.1016/j.ijplas.2007.03.015

    Article  MATH  Google Scholar 

  31. de Montleau P, Habraken AM, Duchêne L (2008) A new finite element integration scheme. Application to a simple shear test of anisotropic material. Int J Numer Meth Eng 73(10):1395–1412. doi:10.1002/nme.2130

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical support of Dr. P. Lava and Dr. D. Debruyne from the Catholic University College Ghent for their in-house developed image correlation software MatchID (http://matchid.org/). Furthermore, the authors would like to acknowledge funding of The Interuniversity Attraction Poles Program (IUAP) of the Federal Science Policy of Belgium and the partners of IUAP-VI (www.m3phys.be).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Peirs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peirs, J., Verleysen, P. & Degrieck, J. Novel Technique for Static and Dynamic Shear Testing of Ti6Al4V Sheet. Exp Mech 52, 729–741 (2012). https://doi.org/10.1007/s11340-011-9541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9541-9

Keywords

Navigation