Skip to main content
Log in

Micro-deep Drawing on Aluminium Crystals in Order to Validate Multiscale Modeling

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper introduces the application of micro-deep drawing of single and multicrystals of aluminium in order to identify parameters of micro-mechanical models. The information obtained experimentally is abundant: load-displacement curves of the punch, the evolution of grain orientation, mapping deformations throughout the test. All this experimental data was used to validate the multiscale models introduced in a finite element code for loading paths ranging from biaxial tensile to simple tensile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Tabourot L, Fivel M, Rauch E (1997) Generalised constitutive laws for FCC single crystals. Mater Sci Eng (A) 234–236:639–642

    Article  Google Scholar 

  2. Tabourot L (2001) Vers une vision unifiée de la plasticité cristalline. Habilitation à Diriger des Recherches, Université de Savoie

  3. Balland P, Tabourot L, Fivel M (2001) Comparison of physically based laws used for numerical simulations of plasticity of metals. J Phys IV 11. 4th European Mechanics of Materials Conference on Processes, Microstructures and Mechanical Properties: 381–396

  4. Tabourot L, Dumoulin S, Balland P (2001) An attempt for a unified description from dislocation dynamics to metallic plastic behaviour. J Phys IV Fr 11(Pr5), 5th European Mechanics of Materials Conference on Scale Transitions from Atomistics to Continuum Plasticity EUROMECH-MECAMAT’2001: 111–118

  5. Orowan E (1934) Zur Kristallplastizität II—Die dynamische Auffassung der Kristallplastizität. Z Angew Phys 89:614–633

    Google Scholar 

  6. Orowan E (1934) Zur Kristallplastizität iII—Uber den Mechanismus des Gleitvorganges. Zeit-Schrift Physik 89:634–659

    Article  Google Scholar 

  7. Schmid E, Boas W (1935) Kristallplastizität. Springer Verlag, Berlin, p 130

    Google Scholar 

  8. Teodosiu C (1975) A physical theory of the finite elastic-viscoplastic behaviour of single crystal. Eng Trans 23:157–183

    Google Scholar 

  9. Franciosi P (1985) The concept of latent hardening and strain hardening in metallic single crystals. Acta Metall 33:1601–1612

    Article  Google Scholar 

  10. Estrin Y, Toth LS, Molinari A, Bréchet Y (1998) A dislocation based model for all hardening stages in large strain deformation. Acta Metall 46(15):5509–5522

    Google Scholar 

  11. Peeters B, Seefeldt M, Teodosiu C, Kalidindi SR, Van Houtte P, Aernoudt E (2001) Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain paths: i. an integrated model based on substructure and texture evolution, and its prediction of the stress-strain behaviour of an IF steel during two-stage strain paths. Acta Mater 49(9):1607–1619

    Article  Google Scholar 

  12. Evers LP, Brekelmans WAM, Geers MGD (2004) Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int J Solids Struct 41:5209–5230

    Article  MATH  Google Scholar 

  13. Gaudin C, Feaugas X (2004) Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses. Acta Mater 52:3097–3110

    Article  Google Scholar 

  14. Devincre B, Kubin L, Hoc T (2006) Physical analyses of crystal plasticity by DD simulations. Scr Mater 54:741–746

    Article  Google Scholar 

  15. Saai A, Tabourot L, Déprés C, Louche H (2007) A fundamental model of aluminium single crystal behavior with physical description of kinematic work hardening. Mater Sci Forum 550:577–582

    Article  Google Scholar 

  16. Sène NA, Balland P, Arrieux R (2008) About necking detection to determine forming limit diagrams for mini stamping. 17th International Scientific and Technical Conference, Design and Technology of Drawpieces and Die Stampings, Poland

  17. Lacombe P (1950) Les méthodes de préparation et d’examen des gros cristaux métalliques, La physique des métaux

  18. Marciniak Z, Kuczynski K (1967) Limit strain in the process of stretch forming sheet metal. Int J Mech Sci 9:609–620

    Article  Google Scholar 

  19. Balland P, Dumoulin S, Milkansen C, Arrieux R, Sergent A, Barathay S, Hans JR (2007) Détermination des courbes limites de formage sur des matériaux nanostructurés. 18ème Congrès Français de Mécanique, Grenoble

  20. Déprés C (2004) Modélisation physique des stades précurseurs de l’endommagement en fatigue dans l’acier inoxydable austénitique 316L. Thèse de Doctorat, INP de Grenoble

  21. Vacher P, Dumoulin S, Morestin F, Mguil-Touchal S (1999) Bidimensional strain measurement using digital images. Proc Inst Mech Eng C 213:811

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Sène.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sène, N.A., Balland, P., Arrieux, R. et al. Micro-deep Drawing on Aluminium Crystals in Order to Validate Multiscale Modeling. Exp Mech 51, 1007–1016 (2011). https://doi.org/10.1007/s11340-010-9398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-010-9398-3

Keywords

Navigation