Skip to main content
Log in

High Temperature Nanoindentation of PMR-15 Polyimide

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents the high temperature nanoindentation experiments performed on an aerospace polymer resin–PMR-15 polyimide. The sharp-tipped Berkovich nanoindenter equipped with a hot-stage heating system was used. The indentation experiments were performed using the “hold-at-the-peak” method at various indenter holding times and unloading rates. The creep effect was seen to decrease with increasing holding time and/or unloading rate. Procedures used to minimize the creep effect are investigated at both ambient and elevated temperatures so that the correct contact depth (together with modulus and hardness) can be determined from nanoindentation load-depth curve. The temperature dependent mechanical properties of PMR-15 are measured through the current nanoindenter and results are consistent with those obtained from macroscopic tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The post-cure temperature was incorrectly stated as 343°C in [16, 25]

References

  1. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564. doi:10.1557/JMR.1992.1564

    Article  Google Scholar 

  2. Oliver WC, Hutchings R, Pethica JB (1986) In: Blau BJ, Lawn BR (Eds) Microindentation Techniques in Materials Science and Engineering, ASTM 889 47

  3. Pharr GM, Harding DS, Oliver WC (1994) Measurement of fracture toughness in thin films and small volumes using nanoindentation methods, materials research society symposium

  4. Pharr GM, Oliver WC, Brotzen FR (1992) On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res 7:613–617. doi:10.1557/JMR.1992.0613

    Article  Google Scholar 

  5. Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 4:601–609. doi:10.1557/JMR.1986.0601

    Article  Google Scholar 

  6. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20. doi:10.1557/jmr.2004.19.1.3

    Article  Google Scholar 

  7. Lu YC, Shinozaki DM (1998) Deep penetration micro-indentation testing of high density polyethylene. Mater Sci Eng A 249:134–144. doi:10.1016/S0921-5093(98)00571-1

    Article  Google Scholar 

  8. Huang G, Wang B, Lu H (2004) Measurements of viscoelastic functions of polymers in the frequency domain by nanoindentation. Mech Time-Depend Mater 8:345–364. doi:10.1007/s11043-004-0440-7

    Article  Google Scholar 

  9. Odgeard GM, Bandorawalla T, Herring HM, Gates TS (2002) Characterization of viscoelastic properties of polymeric materials through nanoindentation, Experimental Mechanics

  10. Lu H, Wang B, Ma J, Huang G, Viswanathan H (2003) Measurement of creep compliance of solid polymers by nanoindentation. Mech Time-Depend Mater 7:189–207. doi:10.1023/B:MTDM.0000007217.07156.9b

    Article  Google Scholar 

  11. Beake BD, Smith JF (2002) High-temperature nanoindentation testing of fused silica and other materials. Philos Mag A 82:2179

    Google Scholar 

  12. Schuh CA, Packard CE, Lund AC (2006) Nanoindentation and contact-mode imaging at high temperatures. J Mater Res 21:725–736. doi:10.1557/jmr.2006.0080

    Article  Google Scholar 

  13. Volinsky AA, Moody NR, Gerberich WW (2004) Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. J Mater Res 19(9):2650–2657. doi:10.1557/JMR.2004.0331

    Article  Google Scholar 

  14. Sawant A, Tin S (2008) High temperature nanoindnetation of a Re-bearing single crystal Ni-base superalloy. Scr Mater 58:275–278. doi:10.1016/j.scriptamat.2007.10.013

    Article  Google Scholar 

  15. Schoeppner, GA, Tandon GP, Pochiraju KV (2008) Predicting thermo-oxidative degradation and performance of high temperature polymer matrix composites. in Multiscale Modeling and Simulation of Composite Materials and Structures, Kwon Y, Allen D, Talreja R (Eds), ISBN: 978-0-387-36318-9, Springer Verlag.

  16. Putthanarat S, Tandon GP, Schoeppner GA (2008) Influence of aging temperature, time, and environment on thermo-oxidative behavior of PMR-15: Nanomechanical characterization. J Mater Sci 43:6714–6723. doi:10.1007/s10853-008-2800-1

    Article  Google Scholar 

  17. Meador MAB, Lowell CE, Cavano PJ, Herrera-Fierro P (1996) On the oxidative degradation of nadic endcapped polyimides: I. effect of thermocycling on weight loss and crack formation. High Perform Polym 8:363–379. doi:10.1088/0954-0083/8/3/003

    Article  Google Scholar 

  18. Data Sheet Cytec Engineered Materials.http://www.cytec.com/engineered-materials/products/Cycom2237.htm, Greenville Texas.

  19. Ngan AHW, Tang B (2004) Viscoelastic effects during unloading in depth-sensing indentation. J Mater Res 17(10):2604–2610. doi:10.1557/JMR.2002.0377

    Article  Google Scholar 

  20. Briscoe BJ, Fiori L, Pelillo E (1998) Nano-indentation of polymeric surfaces. J Phys, D, Appl Phys 31:2395–2405. doi:10.1088/0022-3727/31/19/006

    Article  Google Scholar 

  21. Cheng YT, Cheng CM (2005) Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J Mater Res 20(4):1046–1052. doi:10.1557/JMR.2005.0141

    Article  Google Scholar 

  22. Geng K, Yang F, Grulke EA (2008) Nanoindentation of submicron polymeric coating system. Mater Sci Eng A 479:157–163. doi:10.1016/j.msea.2007.06.042

    Article  Google Scholar 

  23. Mayo MJ, Siegel RW, Liao YX, Nix WD (1992) Nanoindentation of nanocrystalline ZnO. J Mater Res 7:973–979. doi:10.1557/JMR.1992.0973

    Article  Google Scholar 

  24. Cheng Y-T, Cheng C-M (2001) Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos Mag Lett 81:9–16. doi:10.1080/09500830010008457

    Article  Google Scholar 

  25. Putthanarat S, Tandon GP, Schoeppner GA (2007) Influence of polishing time on thermal-oxidation characterization of isothermoally aged PMR-15 resin. Polym Degrad Stab 92:2110–2120. doi:10.1016/j.polymdegradstab.2007.07.007

    Article  Google Scholar 

  26. Johnson LL, Eby RK, Meador MAB (2003) Investigation of oxidation profile in PMR-15 polyimide using atomic force microscope (AFM). Polymer 44:187. doi:10.1016/S0032-3861(02)00726-7

    Article  Google Scholar 

  27. Young RJ, Lovell PA (1991) Introduction to Polymers, 2nd edn. CRC, New York

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the American Society of Engineering Education–Summer Faculty Fellowship Program (SFFP) and performed under the direction of Dr. Greg A Schoeppner of Air Force Research Laboratory (AFRL), WPAFB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y.C., Jones, D.C., Tandon, G.P. et al. High Temperature Nanoindentation of PMR-15 Polyimide. Exp Mech 50, 491–499 (2010). https://doi.org/10.1007/s11340-009-9254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-009-9254-5

Keywords

Navigation