Skip to main content
Log in

Determination of the Johnson–Cook Material Parameters Using the SCS Specimen

  • BRIEF TECHNICAL NOTE
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This note addresses the determination of the Johnson-Cook material parameters using the shear compression specimen (SCS). This includes the identification of the thermal softening effect in quasi static and dynamic loading as well as and the strain rate hardening effect in dynamic loading. A hybrid experimental–numerical (finite element) procedure is presented to identify the constitutive parameters, with an application to Ti6Al4V alloy. The present results demonstrate the suitability of the SCS for constitutive testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Rittel D, Ravichandran G, Lee S (2002) A shear compression specimen for large strain testing. Exp Mech 42(1):58–64. doi:10.1007/BF02411052.

    Article  Google Scholar 

  2. Rittel D, Ravichandran G, Lee S (2002) Large strain constitutive behavior of OFHC copper over a wide range of strain rates using the shear compression specimen. Mech Mater 34(10):627–642. doi:10.1016/S0167-6636(02)00164-3.

    Article  Google Scholar 

  3. Dorogoy A, Rittel D (2005) Numerical validation of the shear compression specimen. Part I: quasi-static large strain testing. Exp Mech 45(2):167–177. doi:10.1007/BF02428190.

    Article  Google Scholar 

  4. Dorogoy A, Rittel D (2005) Numerical validation of the shear compression specimen. Part II: dynamic large strain testing. Exp Mech 45(2):178–185. doi:10.1007/BF02428191.

    Article  Google Scholar 

  5. Vural M, Rittel D, Ravichandran G (2003) Large strain mechanical behavior of 1018 cold rolled steel over a wide range of strain rates. Metall Mater Trans A 34A(12):2873–2885. doi:10.1007/s11661-003-0188-8.

    Article  Google Scholar 

  6. Dorogoy A, Rittel D (2006) A numerical study of the applicability of the shear compression specimen to parabolic hardening materials. Exp Mech A 46:355–366. doi:10.1007/s11340-006-6414-8.

    Article  Google Scholar 

  7. Johnson GJ, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the Seventh International Symposium on Ballistics, The Hague, pp 541–547

  8. Zerilli FJ, Armstrong RW (1987) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61(5):1816–1825. doi:10.1063/1.338024.

    Article  Google Scholar 

  9. Bodner SR, Partom Y (1975) Constitutive equations for elastic–viscoplastic strain-hardening materials. J Appl Mech 42:385–389.

    Google Scholar 

  10. Rittel D, Wang ZG, Dorogoy A (2008) Geometrical imperfection and adiabatic shear banding. Int J Impact Eng 35(11):1280–1292.

    Article  Google Scholar 

  11. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond 62B:676–700.

    Google Scholar 

  12. Rittel D, Wang Z (2008) Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys. Mech Mater 40:629–635. doi:10.1016/j.mechmat.2008.03.002.

    Article  Google Scholar 

  13. Meyers MA (1994) Dynamic behavior of materials. Wiley, New York, NY.

    Book  MATH  Google Scholar 

  14. Lee WS, Lin CF (1998) Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures. Mater Sci Eng A 241:48–59. doi:10.1016/S0921-5093(97)00471-1.

    Article  Google Scholar 

  15. Meyer HW, Kleponis DS (2001) Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration. Int J Impact Eng 26:509–521.

    Article  Google Scholar 

  16. Seo S, Min O, Yang H (2005) Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique. Int J Impact Eng 31:735–754. doi:10.1016/j.ijimpeng.2004.04.010.

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Zonggang Wang for his assistance with the dynamic tests, and Mr. A. Amon and R. Amir for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dorogoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorogoy, A., Rittel, D. Determination of the Johnson–Cook Material Parameters Using the SCS Specimen. Exp Mech 49, 881–885 (2009). https://doi.org/10.1007/s11340-008-9201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9201-x

Keywords

Navigation