Skip to main content
Log in

Optical Sensing Limits in Contact and Bending Mode Atomic Force Microscopy

  • BRIEF TECHNICAL NOTE
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Interferometry and optical deflection offers the best force sensing accuracy using standard cantilever probes in atomic force microscopy. Here, we examine the mechanics of cantilever deformation in the bending and contact mode and the optical sensing principles involved. Under typical conditions, the optical deflection method was found to require displacement measurements that were a thousand times less accurate in order to sense the same amount of force as compared with interferometry used in the regular mode. It also allowed better positioning tolerance for the probe beam in order to retain a high level of accuracy in force sensing. These and other attendant findings serve to provide a clearer outlook for the development of improved accuracy sensors in atomic force microscopy in the contact and bending mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Chasiotis I, Knauss WG (2002) A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Exp Mech 42:51–57.

    Article  Google Scholar 

  2. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933.

    Article  Google Scholar 

  3. Tortonese M, Barret RC, Quate CF (1993) Atomic resolution with an atomic force microscope using piezoresistive detection. Appl Phys Lett 62:834–836.

    Article  Google Scholar 

  4. Neubauer G, Cohen SR, McClelland GM, Horn DE, Mate CM (1990) Force microscopy with a bi-directional capacitance sensor. Rev Sci Instrum 61:2296–2308.

    Article  Google Scholar 

  5. Alexander S, Hellemans L, Marti O, Schneir J, Ellings V, Hansma PK, Longmire M, Gurley J (1989) An atomic resolution atomic-force microscope implemented using an optical lever. J Appl Phys 65:164–167.

    Article  Google Scholar 

  6. Manalis SR, Minne SC, Alatar A, Quarte CF (1996) Interdigital cantilevers for atomic force microscopy. Appl Phys Lett 69:3944–3946.

    Article  Google Scholar 

  7. Rugar D, Mamin HJ, Erlandsson R, Terris BD (1988) Force microscope using a fiber-optic displacement sensor. Rev Sci Instrum 59:2337–2340.

    Article  Google Scholar 

  8. Schonenberger C, Alvarado SF (1989) A differential interferometer for force microscopy. Rev Sci Instrum 60:3131–3134.

    Article  Google Scholar 

  9. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope—force mapping and profiling at a sub 100 angstrom scale. J Appl Phys 61:4723–4729.

    Article  Google Scholar 

  10. Sarid D, Iams D, Weissenberger V (1988) Compact scanning force microscope using a laser diode. Opt Lett 13:1057–1059.

    Article  Google Scholar 

  11. Ng TW, Sasaki O, Chua HT (2004) Resolution analysis of atomic force microscopy using temporal phase modulation interferometry. Opt Eng 43:75–78.

    Article  Google Scholar 

  12. Hanson O, Boisen A (1999) Noise in pizeoresistive atomic force microscopy. Nanotechnology 10:51–60.

    Article  Google Scholar 

  13. Miller AS, Turner KL, MacDonald NC (1997) Micromechanical scanning probe instruments for array architectures. Rev Sci Instrum 68:4155–4162.

    Article  Google Scholar 

  14. Putman CAJ, De Groth BG, Van Hulst NF, Greve J (1992) A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. Appl Phys Lett 72:6–12.

    Google Scholar 

  15. Watanabe M, Minoda H, Takayanagi K (2004) Fabrication of Gold Nanowires Using Contact Mode Atomic Force Microscope. Jpn J Appl Phys, Part 1, 43:6347–6349.

    Article  Google Scholar 

  16. Liang XM, Mao GZ, Ng KYS (2004) Probing small unilamellar EggPC vesicles on mica surface by atomic force microscopy. J Colloid Interface Sci 278:53–62.

    Article  Google Scholar 

  17. Kimura K, Kobayashi K, Yamada H, Horiuchi T, Ishida K, Matsushige K (2004) Orientation control of ferroelectric polymer molecules using contact-mode AFM. Eur Polym J 40:933–938.

    Article  Google Scholar 

  18. Hibbeler RC (2003) Mechanics of materials. Pearson, Upper Saddle River, NJ.

  19. MicroMasch http://www.spmtips.com/.

Download references

Acknowledgement

Funding support through the T2M grant is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, T.W., Thirunavukkarasu, S. Optical Sensing Limits in Contact and Bending Mode Atomic Force Microscopy. Exp Mech 47, 841–844 (2007). https://doi.org/10.1007/s11340-007-9044-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-007-9044-x

Keywords

Navigation