Skip to main content
Log in

Coupled Strain and Fresnel Response of Photoelastic Coatings at Oblique Incidence

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a theoretical model and corresponding experimental results of the oblique-incidence response of a luminescent photoelastic coating (LPC). LPCs use a luminescent dye that both partially preserves the stress-modified polarization state and provides high emission signal strength at oblique surface orientations. These characteristics enable the technique to acquire full-field strain separated measurements and principal strain directions, potentially on complex three-dimensional geometries, without the use of supplemental experimental or analytical techniques. Results of a single-layer LPC on a disk in diametral compression are presented to assess a theoretical model and evaluate the measurement sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The luminescent intensity naturally decreases as surface inclination angle increases because of the high to low refraction index change.

References

  1. Zandman F, Redner S, Dally JW (1977) Photoelastic coatings. Iowa State University Press, Ames.

    Google Scholar 

  2. Lesniak JR, Zickel MJ (1998) Applications of Automated Grey-Field Polariscope. Proceedings of Society of Experimental Mechanics Spring Conference, June, pp. 298–301.

  3. Ramesh K, Mangal SK (1998) Data acquisition techniques in digital photoelasticity: a review. Opt Lasers Eng 30:53–75.

    Article  Google Scholar 

  4. Drucker DC (1943) Photoelastic separation of principal stresses by oblique incidence. Journal of Applied Mechanics, Trans. ASME 65:A156–A160.

    Google Scholar 

  5. Redner SS (1963) New oblique-incidence method for direct photoelastic measurement of principal strains. Exp Mech 3(3):67–72.

    Article  Google Scholar 

  6. O’Regan R (1965) New method for determining strain on the surface of a body with photoelastic coatings. Exp Mech 5(8):241–246.

    Article  Google Scholar 

  7. Barone S, Patterson EA (1996) Full-field separation of principle stresses by combined thermo- and photoelasticity. Exp Mech 36(4):318–324.

    Article  Google Scholar 

  8. Hubner JP, Ifju PG, Schanze KS, Jiang S, Liu Y, El-Ratal W (2004) Luminescent strain sensitive coatings. AIAA J 42(8):1662–1668.

    Article  Google Scholar 

  9. Hubner JP, Ifju PG, Schanze KS, Liu Y, Chen L, El-Ratal W (2004) Luminescent photoelastic coatings. Exp Mech 44(4):416–424.

    Article  Google Scholar 

  10. Hubner J, Chen L, Liu Y, Schanze K, Nicolosi J, Ifju P, El-Ratal W (2005) Characterization of a new luminescent photoelastic coating. Exp Mech 45(2):137–143.

    Article  Google Scholar 

  11. Hubner J, Nicolosi J, Chen L, Ifju P, El-Ratal W (2005) Oblique incidence response of photoelastic coatings. Exp Tech 29(3):52–56.

    Article  Google Scholar 

  12. Hecht E (1987) Optics, 2nd edition. Addison-Wesley, Reading, MA, 1 pp. 92–104.

  13. Lakowicz JR (1983) Principles of fluorescent spectroscopy. Plenum, New York, pp. 111–120.

    Google Scholar 

  14. Frocht MM (1948) Photoelasticity Vol. II. Wiley, New York, pp. 118–155.

    Google Scholar 

  15. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edition. McGraw-Hill, London, pp. 122–126.

    MATH  Google Scholar 

  16. Woolard D, Hinders M (2000) Model for quantifying photoelastic fringe degradation by imperfect retroreflective backings. Appl Opt 39(1):2043–2053.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Hubner.

Appendix

Appendix

Expressions for the coefficients A and B in equation (8) are

$$ \begin{array}{*{20}c} {\frac{A} {{\phi _{{{\text{qe}}}} \phi _{a} E_{{{\text{ex}}}} }}}{ = {\left( {t_{{IIo}} t_{{IIi}} \cos ^{2} \theta \prime + t_{{IIo}} t_{{IIi}} \sin ^{2} \theta \prime \cos \delta * - \frac{1} {2}t_{{IIo}} t_{{ \bot i}} \sin 2\theta \prime \sin \delta *} \right)}\cos \alpha \prime } \\ {}{ + {\left( {\frac{1} {2}t_{{ \bot o}} t_{{IIi}} \sin 2\theta \prime - \frac{1} {2}t_{{ \bot o}} t_{{IIi}} \sin 2\theta \prime \cos \delta * + t_{{ \bot o}} t_{{ \bot i}} \cos ^{2} \theta \prime \sin \delta *} \right)}\sin \alpha \prime } \\ \end{array} $$
(21)

and

$$ \begin{array}{*{20}c} {\frac{B} {{\phi _{{{\text{qe}}}} \phi _{a} E_{{{\text{ex}}}} }}}{ = {\left( { - \frac{1} {2}t_{{IIo}} t_{{ \bot i}} \sin 2\theta \prime + \frac{1} {2}t_{{IIo}} t_{{ \bot i}} \sin 2\theta \prime \cos \delta * + t_{{IIo}} t_{{IIi}} \sin ^{2} \theta \prime \sin \delta *} \right)}\cos \alpha \prime } \\ {}{ - {\left( {t_{{ \bot o}} t_{{ \bot i}} \sin ^{2} \theta \prime + t_{{ \bot o}} t_{{ \bot i}} \cos ^{2} \theta \prime \cos \delta * + \frac{1} {2}t_{{ \bot o}} t_{{IIi}} \sin 2\theta \prime \sin \delta *} \right)}\sin \alpha \prime } \\ \end{array} . $$
(22)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubner, J.P., Chen, L. Coupled Strain and Fresnel Response of Photoelastic Coatings at Oblique Incidence. Exp Mech 47, 549–560 (2007). https://doi.org/10.1007/s11340-007-9033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-007-9033-0

Keywords

Navigation