American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed). American Psychiatric Association.
Arnold, B. C., & Strauss, D. (1991). Pseudolikelihood estimation: Some examples. Sankhy\(\bar{\text{a}}\): The Indian Journal of Statistics, Series B, 53(2), 233–243.
Barber, R. F., & Drton, M. (2015). High dimensional Ising model selection with Bayesian information criteria. Electronic Journal of Statistics, 9(1), 567–607. https://doi.org/10.1214/15-EJS1012
Article
Google Scholar
Barbieri, M. M., & Berger, J. O. (2004). Optimal predictive model selection. Annals of Statistics, 32(3), 870–897. https://doi.org/10.1214/009053604000000238
Article
Google Scholar
Besag, J. (1975). Statistical analysis of non-lattice data. Journal of the Royal Statistical Society. Series D (The Statistician), 24(3), 179–195. https://doi.org/10.2307/2987782
Article
Google Scholar
Bhattacharyya, A., & Atchade, Y. (2019). Bayesian analysis of high-dimensional discrete graphical models. arXiv. https://arxiv.org/abs/1907.01170
Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121. https://doi.org/10.1146/annurev-clinpsy-050212-185608
Article
PubMed
Google Scholar
Bühlmann, P., Kalisch, M., & Meier, L. (2014). High-dimensional statistics with a view toward applications in biology. Annual Reviews of Statistics and Its Applications, 1, 255–278. https://doi.org/10.1146/annurev-statistics-022513-115545
Article
Google Scholar
Carvalho, C. M., & Scott, J. G. (2009). Objective Bayesian model selection in Gaussian graphical models. Biometrika, 96(3), 497–512. https://doi.org/10.1093/biomet/asp017
Article
Google Scholar
Caspi, A., Houts, R., Belsky, D., Goldman-Mellor, S., Harrington, H., Israel, S., Israel, S., ... Moffit, T. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2(2), 119–137. https://doi.org/10.1177/2167702613497473
Castillo, I., Schmidt-Hieber, J., & van der Vaart, A. (2015). Bayesian linear regression with sparse priors. The Annals of Statistics, 43(5), 1986–2018. https://doi.org/10.1214/15-AOS1334
Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771. https://doi.org/10.1093/biomet/asn034
Consonni, G., Fouskakis, D., Liseo, B., & Ntzoufras, I. (2018). Prior distributions for objective Bayesian analysis. Bayesian Analysis, 13(2), 627–679. https://doi.org/10.1214/18-BA1103
Article
Google Scholar
Constantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugi, M. (2019). Stability and variability of personality networks: A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 136, 68–78. https://doi.org/10.1016/j.paid.2017.06.011
Article
Google Scholar
Cox, D. (1972). The analysis of multivariate binary data. Journal of the Royal Statistical Society. Series B (Applied Statistics), 21(2), 113–120. https://doi.org/10.2307/2346482
Article
Google Scholar
Cramer, A. O. J., van Borkulo, C. D., Giltay, E. J., van der Maas, H. L. J., Kendler, K. S., Scheffer, M., & Borsboom, D. (2016). Major depression as a complex dynamic system. PLoS One, 11(12), 1–20. https://doi.org/10.1371/journal.pone.0167490
Article
Google Scholar
Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., ... Borsboom, D. (2012). Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people. European Journal of Personality, 26, 414–431. https://doi.org/10.1002/per.1866
Csiszár, I., & Talata, Z. (2006). Consistent estimation of the basic neighborhood of Markov random fields. The Annals of Statistics, 34(1), 123–145. https://doi.org/10.1214/009053605000000912
Article
Google Scholar
Dalege, J., Borsboom, D., van Harreveld, F., van den Berg, H., Conner, M., & van der Maas, H. L. J. (2016). Towards a formalized acount of attitudes: The causal attitude network (CAN) model. Psychological Review, 123(1), 2–22. https://doi.org/10.1037/a0039802
Article
PubMed
Google Scholar
Dalege, J., Borsboom, D., van Harreveld, F., & van der Maas, H. L. J. (2019). A network perspective on political attitudes: Testing the connectivity hypothesis. Social Psychological and Personality Science, 10(6), 746–756. https://doi.org/10.1177/1948550618781062
Dellaportas, P., Forster, J. J., & Ntzoufras, I. (2002). On Bayesian model and variable selection using MCMC. Statistics and Computing, 12, 27–36. https://doi.org/10.1023/A:1013164120801199
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.
Dobra, A., & Lenkoski, A. (2011). Copula Gaussian graphical models and their application to modeling functional disability data. The Annals of Applied Statistics, 5(2A), 969–993. https://doi.org/10.1214/10-AOAS397
Donner, C., & Opper, M. (2017). Inverse Ising problem in continuous time: A latent variable approach. Physical Review E, 96(062104), 1–9. https://doi.org/10.1103/PhysRevE.96.062104
Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195–212. https://doi.org/10.3758/s13428-017-0862-1
Article
PubMed
Google Scholar
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1–18.
Article
Google Scholar
Epskamp, S., Kruis, J., & Marsman, M. (2017). Estimating psychopathological networks: Be careful what you wish for. PLoS One, 12, e0179891. https://doi.org/10.1371/journal.pone.0179891
Epskamp, S., Maris, G., Waldorp, L., & Borsboom, D. (2018). Network psychometrics. In P. Irwing, D. Hughes, & T. Booth (Eds.), Handbook of psychometrics (pp. 953–986). Wiley.
Erdős, P., & Rènyi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5(1), 17–60.
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596
Article
PubMed
Google Scholar
George, E. I. (1999). Discussion of “Bayesian model averaging and model search strategies by Clyde M. In J. Bernardo, J. Berger, A. Dawid, & A. Smith (Eds.), Bayesian statistics (Vol. 6, pp. 175–177). Oxford University Press.
George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881–889.
Article
Google Scholar
George, E. I., & McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7(2), 339–373.
Google Scholar
Geys, H., Molenberghs, G., & Ryan, L. M. (2007). Pseudo-likelihood inference for clustered binary data. Communications in Statistics-Theory and Methods, 26(11), 2743–2767. https://doi.org/10.1080/03610929708832075
Article
Google Scholar
Gronau, Q. F., Sarafoglou, A., Matzke, D., Boehm, U., Marsman, M., Leslie, D. S., ... Steingroever, H. (2017). A tutorial on bridge sampling. Journal of Mathematical Psychology, 81, 80–97. https://doi.org/10.1016/j.jmp.2017.09.005
Huth, K., Luigjes, K., Marsman, M., Goudriaan, A. E., & van Holst, R. J. (in press). Modeling alcohol use disorder as a set of interconnected symptoms—Assessing differences between clinical and population samples and across external factors. Addictive Behaviors.
Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, 31(1), 253–258. https://doi.org/10.1007/BF02980577
Article
Google Scholar
Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford University Press.
Kass, R. E., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relation to the Schwarz criterion. Journal of the American Statistical Association, 90(431), 928–934. https://doi.org/10.1080/01621459.1995.10476592
Article
Google Scholar
Kindermann, R., & Snell, J. L. (1980). Markov random fields and their applications (Vol. 1). American Mathematical Society.
Knight, K., & Fu, W. (2000). Asymptotics of Lasso-type estimators. The Annals of Statistics, 28(5), 1356–1378. https://doi.org/10.1214/aos/1015957397
Article
Google Scholar
Kooperberg, C. (2019). logspline: Routines for logspline density estimation. Retrieved from. https://CRAN.R-project.org/package=logspline R package version 2.1.15
Kuo, L., & Mallick, B. (1998). Variable selection for regression models. Sankhy\(\bar{\text{ a }}\): The Indian Journal of Statistics, Series B, 60(1), 65–81.
Kyung, M., Gill, J., Ghosh, M., & Casella, G. (2010). Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis, 5(2), 369–412.
Lange, K. (1995). A gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 57(2), 425–437.
Article
Google Scholar
Lee, M. D., & Wagenmakers, E. (2013). Bayesian cognitive modeling: A practical course. Cambridge University Press.
Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, A. J., ... Wagenmakers, E. (2019). JASP—graphical statistical software for common statistical designs. Journal of Statistical Software, 88(2), 1–17. https://doi.org/10.18637/jss.v088.i02
Ly, A., & Wagenmakers, E. J. (2021). Bayes factors for peri-null hypotheses. arXiv. https://arxiv.org/abs/2102.07162.
Makalic, E., & Schmidt, D.F. (2016). High-dimensional Bayesian regularised regression with the BayesReg package. https://arxiv.org/abs/161106649v3
Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L. J., ... Maris, G. K. J. (2018). An introduction to network psychometrics: Relating Ising network models to item response theory models. Multivariate Behavioral Research, 53(1), 15–35. https://doi.org/10.1080/00273171.2017.1379379
Marsman, M., Maris, G. K. J., Bechger, T. M., & Glas, C. A. W. (2015). Bayesian inference for low-rank Ising networks. Scientific Reports, 5, 9050. https://doi.org/10.1038/srep09050
Article
PubMed
PubMed Central
Google Scholar
Marsman, M., Tanis, C. C., Bechger, T. M., & Waldorp, L. J. (2019). Network psychometrics in educational practice. Maximum likelihood estimation of the Curie–Weiss model. In B. P. Veldkamp & C. Sluijter (Eds.), Theoretical and practical advances in computer-based educational measurement (pp. 93–120). Springer.
Marsman, M., & Wagenmakers, E. (2017). Bayesian benefits with JASP. European Journal of Developmental Psychology, 14(5), 545–555. https://doi.org/10.1080/17405629.2016.1259614
Article
Google Scholar
Meinshausen, N., & Bühlmann, P. (2006). High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34(3), 1436–1462.
Meng, X., & Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statistica Sinica, 6(4), 831–860.
Google Scholar
Meredith, M., & Kruschke, J. (2020). HDInterval: Highest (posterior) density intervals. Retrieved from. https://cran.r-project.org/web/packages/HDInterval/index.html
Miller, J. W. (2019). Asymptotic normality, concentration, and coverage of generalized posteriors. arXiv. https://arxiv.org/abs/1907.09611
Mohammadi, A., & Wit, E. C. (2015). Bayesian structure learning in sparse Gaussian graphical models. Bayesian Analysis, 10(1), 109–138. https://doi.org/10.1214/14-BA889
Article
Google Scholar
Mohammadi, R. (2020). ssgraph: Bayesian graphical estimation using spike-and-slab priors. Retrieved from. https://cran.r-project.org/package=ssgraph
Mohammadi, R., & Wit, E. (2019). BDgraph: An R package for Bayesian structure learning in graphical models. Journal of Statistical Software, 89(3)
Narisetty, N. N., & He, X. (2014). Bayesian variable selection with shrinking and diffusing priors. The Annals of Statistics, 42(2), 789–817. https://doi.org/10.1214/14-AOS1207
Article
Google Scholar
Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Wiley.
O’Hara, R. B., & Sillanpää, M. J. (2009). A review of Bayesian variable selection methods: What, how and which. Bayesian Analysis, 4(1), 85–118. https://doi.org/10.1214/09-BA403
Article
Google Scholar
Park, T., & Casella, G. (2008). The Bayesian lasso. Journal of the American Statistical Association, 103(482), 681–686. https://doi.org/10.1198/016214508000000337
Article
Google Scholar
Pensar, J., Nyman, H., Niiranen, J., & Corander, J. (2017). Marginal pseudo-likelihood learning of discrete Markov network structures. Bayesian Analysis, 12(4), 1195–1215. https://doi.org/10.1214/16-BA1032
Article
Google Scholar
Polson, N. G., Scott, J. G., & Windle, J. (2013a). Bayesian inference for logistic models using Pólya-Gamma latent variables. Journal of the American Statistical Association, 108(504), 1339–1349. https://doi.org/10.1080/01621459.2013.829001
Article
Google Scholar
Polson, N. G. , Scott, J. G. , & Windle, J. (2013b). BayesLogit: PolyaGamma sampling. Retrieved from. https://CRAN.R-project.org/package=BayesLogit
Pötscher, B. M., & Leeb, H. (2009). On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding. Journal of Multivariate Analysis, 100(9), 2065–2082. https://doi.org/10.1016/j.jmva.2009.06.010
Article
Google Scholar
R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org/
Raftery, A. E. (1999). Bayes factors and BIC. Comment on “A critique of the Bayesian information criterion for model selection’’. Sociological Methods & Research, 27(3), 411–427. https://doi.org/10.1177/0049124199027003005
Article
Google Scholar
Ravikumar, P., Wainwright, M. J., & Lafferty, J. D. (2010). High-dimensional Ising model selection using \(l_1\)-regularized logistic regression. Annals of Statistics, 38(3), 1287–1319. https://doi.org/10.1214/09-AOS691
Article
Google Scholar
Ročková, V. (2018). Bayesian estimation of sparse signals with a continuous spike-and-slab prior. The Annals of Statistics, 46(1), 401–437. https://doi.org/10.1214/17-AOS1554
Article
Google Scholar
Ročková, V., & George, E. I. (2014). The EM approach to Bayesian variable selection. Journal of the American Statistical Association, 109(506), 828–846. https://doi.org/10.1080/01621459.2013.869223
Article
Google Scholar
Ročková, V., & George, E. I. (2018). The spike-and-slab lasso. Journal of the American Statistical Association, 113(521), 431–444. https://doi.org/10.1080/01621459.2016.1260469
Article
Google Scholar
Savi, A. O., Marsman, M., van der Maas, H. L. J., & Maris, G. K. J. (2019). The wiring of intelligence. Perspectives on Psychological Science, 16(6), 1034–1061. https://doi.org/10.1177/1745691619866447
Article
Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
Article
Google Scholar
Scott, J. G., & Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Annals of Statistics, 38(5), 2587–2619. https://doi.org/10.1214/10-AOS792
Article
Google Scholar
Storey, J. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics, 31(6), 2013–2035. https://doi.org/10.1214/aos/1074290335
Article
Google Scholar
Talhouk, A., Doucet, A., & Murphy, K. (2012). Efficient Bayesian inference for multivariate probit models with sparse inverse covariance matrices. Journal of Computational and Graphical Statistics, 21(3), 739–757. https://doi.org/10.1080/10618600.2012.679239
Article
Google Scholar
Tanner, M. (1996). Tools for statistical inference. Methods for the exploration of posterior distributions and likelihood functions. Springer. https://doi.org/10.1007/978-1-4612-4024-2
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288.
Article
Google Scholar
Tierney, L., Kass, R. E., & Kadane, J. B. (1989). Fully exponential Laplace approximations to expectations and variances of nonpositive functions. Journal of the American Statistical Association, 84(407), 710–716. https://doi.org/10.2307/2289652drton
Article
Google Scholar
United States Department of Health and Human Services. (2016). National survey on drug use and health, 2014. Inter-university Consortium for Political and Social Research [distributor]. https://doi.org/10.3886/ICPSR36361.v1
van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., & Waldorp, L. J. (2014). A new method for constructing networks from binary data. Scientific Reports, 4, 5918.https://doi.org/10.1038/srep05918
Article
Google Scholar
van Borkulo, C. D., Epskamp, S., & Robitzsch, A. (2016). IsingFit: Fitting Ising models using the eLasso method. Retrieved from. https://CRAN.R-project.org/package=IsingFit (R package version 0.3.1)
van de Geer, S., Bülmann, P., Ritov, Y., & Dezeure, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. The Annals of Statistics, 42(3), 1166–1202. https://doi.org/10.1214/14-AOS1221
Article
Google Scholar
van Erp, S., Oberski, D. L., & Mulder, J. (2019). Shrinkage priors for Bayesian penalized regression. Journal of Mathematical Psychology, 28, 31–50. https://doi.org/10.1016/j.jmp.2018.12.004
Article
Google Scholar
van der Maas, H. L. J., Kan, K. J., Marsman, M., & Stevenson, C. E. (2017). Network models for cognitive development and intelligence. Journal of Intelligence, 5(2), 1–17. https://doi.org/10.3390/jintelligence5020016
Article
Google Scholar
Wagenmakers, E. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779–804. https://doi.org/10.3758/BF03194105
Article
Google Scholar
Wagenmakers, E., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., ... Morey, R. D. (2018). Bayesian inference for psychology. Part ii: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58–76. https://doi.org/10.3758/s13423-017-1323-7
Wagenmakers, E., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., ... Morey, R. D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulleting & Review, 25(1), 58–76. https://doi.org/10.3758/s13423-017-1343-3
Wang, H. (2015). Scaling it up: Stochastic search structure learning in graphical models. Bayesian Analysis, 10(2), 351–377. https://doi.org/10.1214/14-BA916
Article
Google Scholar
Williams, D. R. (2021). The confidence interval that wasn’t: Bootstrapped “confidence intervals” in L\(_1\)-regularized partial correlation networks. (PsyArXiv.) https://doi.org/10.31234/osf.io/kjh2f
Williams, D. R., & Mulder, J. (2020). Bayesian hypothesis testing for Gaussian graphical models: Conditional independence and order constraints. Journal of Mathematical Psychology, 99, 102441.
Article
Google Scholar
Williams, D. R., & Mulder, J. (2020). BGGM: Bayesian Gaussian graphical models in R. Journal of Open Source Software, 5(51), 2111. https://doi.org/10.21105/joss.02111
Article
Google Scholar
Williams, D. R., Rast, P., Pericchi, L. R., & Mulder, J. (2020). Comparing Gaussian graphical models with the posterior predictive distribution and Bayesian model selection. Psychological Methods, 25(5), 653–672. https://doi.org/10.1037/met0000254
Article
PubMed
PubMed Central
Google Scholar
Windle, J., Polson, N. G., & Scott, J. G. (2014). Sampling Pólya-Gamma random variates: Alternate and approximate techniques. https://arXiv.org/abs/1405.0506
Womack, A. J., Fuentes, C., & Taylor-Rodriguez, D. (2015). Model space priors for objective sparse Bayesian regression. https://arXiv.org/abs/1511.04745