Aigner, D., Hsiao, C., Kapteyn, A., & Wansbeek, T. (1984). Latent variable models in econometrics. In Z. Griliches & M. D. Intriligator (Eds.), Handbook of econometrics (Vol. 2, pp. 1321–1393). North-Holland.
Albert, A., & Anderson, J. (1984). On the existence of maximum likelihood estimates in logistic regression models. Biometrika, 71, 1–10.
Google Scholar
Allison, P. (2009). Fixed effects regression models. Sage.
Andersen, E. B. (1970). Asymptotic properties of conditional maximum likelihood estimators. Journal of the Royal Statistical Society Series B, 32, 283–301.
Google Scholar
Andersen, E. B. (1971). The asymptotic distribution of conditional likelihood ratio tests. Journal of the American Statistical Association, 66, 630–633.
Google Scholar
Andersen, E. B. (1973a). Conditional inference and models for measuring. Mentalhygiejnisk Forsknings Institut.
Andersen, E. B. (1973b). Conditional inference for multiple-choice questionnaires. British Journal of Mathematical and Statistical Psychology, 26, 31–44.
Google Scholar
Andersen, E. B. (1980). Discrete statistical models with social science applications. North-Holland.
Andersen, E. B., & Madsen, M. (1977). Estimating the parameters of the latent population distribution. Psychometrika, 42, 357–374.
Google Scholar
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561–573.
Google Scholar
Angrist, J., & Pischke, J. (2009). Mostly harmless econometrics. Princeton University Press.
Arellano, M., & Hahn, J. (2007). Understanding bias in nonlinear panel models: Some recent developments. In R. Blundell, W. Newey, & T. Persson (Eds.), Advances in economics and econometrics: Ninth world congress (pp. 381–409). Cambridge University Press.
Arminger, G., & Schoenberg, R. (1989). Pseudo maximum likelihood estimation and a test for misspecification in mean and covariance structure models. Psychometrika, 54, 409–425.
Google Scholar
Balazsi, L., Matyas, L., & Wansbeek, T. (2017). Fixed effects models. In L. Matyas (Ed.), The econometrics of multi-dimensional panels (pp. 1–34). Springer.
Bartlett, M. (1936). The information available in small samples. Proceedings of the Cambridge Philosophical Society, 32, 560–566.
Google Scholar
Bartlett, M. (1937a). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London, A, 160, 268–282.
Google Scholar
Bartlett, M. (1937b). The statistical conception of mental factors. British Journal of Psychology, 28, 97–104.
Google Scholar
Bartolucci, F., & Nigro, V. (2010). A dynamic model for binary panel data with unobserved heterogeneity admitting a \(\sqrt{n}\)-consistent conditional estimator. Econometrica, 78, 719–733.
Google Scholar
Bartolucci, F., Bellio, R., Salvan, A., & Sartori, N. (2016). Modified profile likelihoods for fixed-effects panel models. Econometric Reviews, 35, 1271–1289.
Google Scholar
Bellio, R., & Sartori, N. (2006). Practical use of modified maximum likelihoods for stratified data. Biometrical Journal, 48, 876–886.
PubMed
Google Scholar
Bock, R. D., & Lieberman, M. (1970). Fitting a response model for \(n\) dichotomously scored items. Psychometrika, 35, 179–197.
Google Scholar
Bollen, K., & Brand, J. (2010). A general panel model with random and fixed effects: A structural equations approach. Social Forces, 81, 1–34.
Google Scholar
Booth, J., & Hobert, J. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B, 61, 265–285.
Google Scholar
Bound, J., & Solon, G. (1999). Double trouble: On the value of twins-based estimation of the return to schooling. Economics of Education Review, 18, 169–182.
Google Scholar
Box, G., & Jenkins, G. (1976). Time series analysis: Forecasting and control. Holden Day.
Breslow, N. (1996). Statistics in epidemiology: The case-control study. Journal of the American Statistical Association, 91, 14–28.
PubMed
Google Scholar
Breusch, T. (1987). Maximum likelihood estimation of random effects models. Journal of Econometrics, 36, 383–389.
Google Scholar
Browne, M. (1974). Generalized least squares estimation in the analysis of covariance structures. South African Statistical Journal, 8, 1–24.
Google Scholar
Brumback, B., Dailey, A., Brumback, L., Livingston, M., & He, Z. (2010). Adjusting for confounding by cluster using generalized linear mixed models. Statistics and Probability Letters, 80, 1650–1654.
Google Scholar
Butler, S., & Louis, T. (1997). Consistency of maximum likelihood estimators in general random effects models for binary data. Annals of Statistics, 25, 351–377.
Google Scholar
Cameron, C., & Trivedi, P. (1999). Regression analysis of count data. Cambridge: Cambridge University Press.
Castellano, K., Rabe-Hesketh, S., & Skrondal, A. (2014). Composition, context, and endogeneity in school and teacher comparisons. Journal of Educational and Behavioral Statistics, 39, 333–367.
Google Scholar
Chamberlain, G. (1980). Analysis of covariance with qualitative data. Review of Economic Studies, 47, 225–238.
Google Scholar
Chamberlain, G. (1984). Panel data. In Z. Griliches & M. D. Intriligator (Eds.), Handbook of econometrics (Vol. 2, pp. 131–1247). North-Holland.
Chamberlain, G. (1985). Heterogeneity, omitted variable bias, and duration dependence. In J. Heckman & B. Singer (Eds.), Longitudinal analysis of labor market data (pp. 3–38). Cambridge University Press.
Charbonneau, K. (2017). Multiple fixed effects in binary response panel data models. Econometrics Journal, 20, S1–S13.
Google Scholar
Chen, H. (2007). A semiparametric odds ratio model for measuring association. Biometrics, 63, 413–421.
Google Scholar
Conaway, M. (1989). Analysis of repeated categorical measurements with conditional likelihood methods. Journal of the American Statistical Association, 84, 53–62.
Google Scholar
Cook, R., & Farewell, V. (1999). The utility of mixed-form likelihoods. Biometrics, 55, 284–288.
PubMed
Google Scholar
Cox, D. R. (1970). The analysis of binary data. Methuen.
Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society, Series B, 34, 187–202.
Google Scholar
Cox, D. R. (1975). Partial likelihood. Biometrika, 62, 269–276.
Google Scholar
Cox, D. R., & Wermuth, N. (1994). A note on the quadratic exponential binary model. Biometrika, 81, 403–408.
Google Scholar
De Boeck, P., & Wilson, M. (Eds.). (2004). Explanatory item response models: A generalized linear and nonlinear approach. Springer.
de Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics, 11, 183–196.
Google Scholar
D’Haultfæuille, X., & Iaria, A. (2016). A convenient method for the estimation of the multinomial logit model with fixed effects. Economics Letters,141, 77–79.
Diggle, P., & Kenward, M. (1994). Informative drop-out in longitudinal data analysis. Applied Statistics, 43, 49–93.
Google Scholar
Diggle, P., Morris, S., & Wakefield, J. (2000). Point-source modeling using matched case-control data. Biostatistics, 1, 89–105.
PubMed
Google Scholar
Draper, D. (1995). Inference and hierarchical modeling in the social sciences. Journal of Educational and Behavioral Statistics, 20, 115–147.
Google Scholar
Ebbes, P., Böckenholt, U., & Wedel, M. (2004). Regressor and random-effects dependencies in multilevel models. Statistica Neerlandica, 58, 161–178.
Google Scholar
Felsenstein, J. (1981). Evolutionary trees from gene frequencies and quantitative characters: Finding maximum likelihood estimates. Evolution, 35, 1229–1242.
PubMed
Google Scholar
Fischer, G. (1995a). Derivation of the Rasch model. In G. Fischer & I. Molenaar (Eds.), Rasch models. foundations, recent developments, and applications (pp. 15–38). Springer.
Fischer, G. (1995b). The linear logistic test model. In G. Fischer & I. Molenaar (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 131–155). New York: Springer.
Google Scholar
Fischer, G. (1995c). Linear logistic models for change. In G. Fischer & I. Molenaar (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 157–180). Springer.
Formann, A. (1995). Linear logistic latent class analysis and the Rasch model. In G. Fischer & I. Molenaar (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 239–255). Springer.
Frisell, T., Öberg, S., Kuja-Halkola, R., & Sjölander, A. (2012). Sibling comparison designs. Epidemiology, 23, 713–720.
PubMed
Google Scholar
Fuller, W., & Battese, G. (1973). Transformations for estimation of linear models with nested error structure. Journal of the American Statistical Association, 68, 626–632.
Google Scholar
Gail, M., Wieand, S., & Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika, 71, 431–444.
Google Scholar
Goetgeluk, S., & Vansteelandt, S. (2008). Conditional generalized estimating equations for the analysis of clustered and longitudinal data. Biometrics, 64, 772–780.
PubMed
Google Scholar
Goldberger, A. S. (1971). Econometrics and psychometrics: A survey of communalities. Psychometrika, 36, 83–107.
Google Scholar
Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73, 43–56.
Google Scholar
Gourieroux, C., & Monfort, A. (1995). Statistics and econometrics (Vol. 2). Cambridge University Press.
Gourieroux, C., Monfort, A., & Trognon, A. (1984). Pseudo maximum likelihood methods: Theory. Econometrica, 52, 681–700.
Google Scholar
Greene, W. (2004). The behaviour of the maximum likelihood estimator of limited dependent variable models in the presence of fixed effects. Econometrics Journal, 7, 98–119.
Google Scholar
Greenland, S., Pearl, J., & Robins, J. (1999). Causal diagrams for epidemiologic research. Epidemiology, 10, 37–48.
PubMed
Google Scholar
Griliches, Z., & Hausman, J. (1986). Errors in variables in panel data. Journal of Econometrics, 31, 93–118.
Google Scholar
Gustafsson, J.-E. (1980). A solution of the conditional estimation problem for long tests in the Rasch model for dichotomous items. Educational and Psychological Measurement, 40, 377–385.
Google Scholar
Haberman, S. (1977). Maximum likelihood estimates in exponential response models. Annals of Statistics, 5, 815–841.
Google Scholar
Hausman, J. (1978). Specification tests in econometrics. Econometrica, 46, 1251–1271.
Google Scholar
Hausman, J., & Taylor, W. (1981). Panel data and unobservable individual effects. Econometrica, 49, 1377–1398.
Google Scholar
Hausman, J., & Wise, D. (1979). Attrition bias in experimental and panel data: The Gary income maintenance experiment. Econometrica, 47, 455–473.
Google Scholar
Hausman, J., Hall, B., & Griliches, Z. (1984). Econometric models for count data with an application to the Patents-R&D relationship. Econometrica, 52, 909–939.
Google Scholar
Heinen, T. (1996). Latent class and discrete latent trait models: Similarities and differences. Sage.
Honoré, B., & Kyriazidou, E. (2000). Panel data discrete choice models with lagged dependent variables. Econometrica, 68, 839–874.
Google Scholar
Heagerty, P. (1999). Marginally specified logistic-normal models for longitudinal binary data. Biometrics, 55, 688–698.
PubMed
Google Scholar
Heagerty, P., & Kurland, B. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika, 88, 973–985.
Google Scholar
Holland, P. (1990). On the sampling theory foundations of item response theory models. Psychometrika, 55, 577–601.
Google Scholar
Howard, S. (1972). Discussion on professor Cox’s paper. Journal of the Royal Statistical Society, Series B, 34, 210–211.
Imai, K., & Kim, I. (2019). When should we use unit fixed effects regression models for causal inference with longitudinal data? American Journal of Political Science, 63, 467–490.
Google Scholar
Kalbfleisch, J. (1978). Likelihood methods and nonparametric tests. Journal of the American Statistical Association, 73, 167–170.
Google Scholar
Kalbfleisch, J., & Sprott, D. (1970). Application of likelihood methods to models involving large numbers of parameters. Journal of the Royal Statistical Society, Series B, 32, 175–208.
Google Scholar
Kelderman, H., & Rijkes, C. (1994). Loglinear multidimensional IRT models for polytomously scored items. Psychometrika, 59, 149–176.
Google Scholar
Kertesz, B. (2017). Discrete response models. In L. Matyas (Ed.), The econometrics of multi-dimensional panels (pp. 163–194). Springer.
Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Annals of Mathematical Statistics, 27, 887–906.
Google Scholar
Laird, N., & Ware, J. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963–974.
PubMed
Google Scholar
Laisney, F., & Lechner, M. (2003). Almost consistent estimation of panel probit models with ‘small’ fixed effects. Econometric Reviews, 22, 1–28.
Lancaster, T. (1990). The econometric analysis of transition data. Cambridge University Press.
Lancaster, T. (2000). The incidental parameter problem since 1948. Journal of Econometrics, 95, 391–413.
Google Scholar
Lancaster, T. (2004). An introduction to modern Bayesian econometrics. Wiley.
Lauritzen, S., Dawid, A., Larsen, B., & Leimer, M. (1990). Independence properties of directed Martkov fields. Networks, 20, 491–505.
Google Scholar
Lee, M.-J. (2002). Panel data econometrics: Methods-of-moments and limited dependent variables. Academic Press.
Liang, K.-Y. (1987). Extended Mantel–Haenszel estimating procedure for multivariate logistic regression models. Biometrics, 43, 289–299.
PubMed
Google Scholar
Liang, K.-Y., & Zeger, S. (2000). Longitudinal data analysis of continuous and discrete responses for pre-post designs. Sankhya, 62, 134–148.
Google Scholar
Lindsay, B. G., Clogg, C. C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96–107.
Google Scholar
Little, R. (1985). A note about models for selectivity bias. Econometrica, 53, 1469–1474.
Google Scholar
Maddala, G. (1971). The use of variance components models in pooling cross section and time series data. Econometrica, 39, 341–358.
Google Scholar
Manski, C. (1981). Models for discrete data: The analysis of discrete choice. Sociological Methodology, 12, 58–109.
Google Scholar
Maris, E. (1998). On the sampling interpretation of confidence intervals and hypothesis tests in the context of conditional maximum likelihood estimation. Psychometrika, 63, 65–71.
Google Scholar
Maris, G., & Bechger, T. (2007). Scoring open ended questions. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics (Vol. 26, pp. 663–681). Elsevier.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.
Google Scholar
McCulloch, C., & Neuhaus, J. (2011a). Misspecifying the shape of a random effects distribution: Why getting it wrong may not matter. Statistical Science, 26, 388–402.
Google Scholar
McCulloch, C., & Neuhaus, J. (2011b). Prediction of random effects in linear and generalized linear models under model misspecification. Biometrics, 67, 270–279.
PubMed
PubMed Central
Google Scholar
McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 105–142). Academic.
Mehta, C., & Patel, N. (1995). Exact logistic regression: Theory and examples. Statistics in Medicine, 19, 2143–2160.
Google Scholar
Molenaar, I. (1995). Estimation of item parameters. In G. Fischer & I. Molenaar (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 39–51). Springer.
Mukherjee, B., Ahn, J., Liu, I., Rathouz, P., & Sanchez, B. (2008). Fitting stratified proportional odds models by amalgamating conditional likelihoods. Statistics in Medicine, 27, 4950–4971.
PubMed
PubMed Central
Google Scholar
Mundlak, Y. (1978). On the pooling of time series and cross section data. Econometrica, 46, 69–85.
Google Scholar
Nelder, J., & Wedderburn, R. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135, 370–384.
Google Scholar
Neuhaus, J., Hauck, W., & Kalbfleisch, J. (1992). The effects of mixture distribution misspecification when fitting mixed-effects logistic models. Biometrika, 79, 755–762.
Google Scholar
Neuhaus, J., & Jewell, N. (1990). The effect of retrospective sampling on binary regression models for clustered data. Biometrics, 46, 977–990.
PubMed
Google Scholar
Neuhaus, J., & McCulloch, C. (2006). Separating between-and within-cluster covariate effects by using conditional and partitioning methods. Journal of the Royal Statistical Society, Series B, 68, 859–872.
Google Scholar
Neuhaus, J., & McCulloch, C. (2011). Estimation of covariate effects in generalized linear mixed models with informative cluster sizes. Biometrika, 98, 147–162.
PubMed
PubMed Central
Google Scholar
Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.
Google Scholar
Palta, M., & Yao, T.-J. (1991). Analysis of longitudinal data with unmeasured confounders. Biometrics, 47, 1355–1369.
PubMed
Google Scholar
Patterson, H., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58, 545–554.
Google Scholar
Pawitan, Y. (2001). In all likelihood: Statistical modelling and inference using likelihood. Oxford University Press.
Petersen, A., & Lange, T. (2020). What is the causal interpretation of sibling comparison designs? Epidemiology, 31, 75–81.
PubMed
Google Scholar
Pfeiffer, R., Gail, M., & Pee, D. (2001). Inference for covariates that accounts for ascertainment and random genetic effects in family studies. Biometrika, 88, 933–948.
Google Scholar
Prentice, R. (1976). Use of the logistic model in retrospective studies. Biometrics, 32, 599–606.
PubMed
Google Scholar
Prentice, R., & Breslow, N. (1978). Retrospective studies and failure time models. Biometrika, 65, 153–158.
Google Scholar
Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2003). Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation. Statistical Modeling, 3, 215–232.
Google Scholar
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural equation modeling. Psychometrika, 69, 167–190.
Google Scholar
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128, 301–323.
Google Scholar
Rabe-Hesketh, S., & Skrondal, A. (2009). Generalized linear mixed-effects models. In G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs (Eds.), Longitudinal data analysis (pp. 79–106). Chapman & Hall/CRC.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Danmarks Pædagogiske Institut.
Rasch, G. (1961). On general laws and the meaning of measurement in psychology. In J. Neyman (Ed.), Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Volume 4: Contributions to Biology and Problems of Medicine (pp. 321–333). University of California Press.
Rice, K. (2004). Equivalence between conditional and mixture approaches to the Rasch model and matched case-control studies, with applications. Journal of the American Statistical Association, 99, 510–522.
Google Scholar
Ridder, G., & Tunali, I. (1999). Stratified partial likelihood estimation. Journal of Econometrics, 92, 193–232.
PubMed
Google Scholar
Robins, J., Mark, S., & Newey, W. (1992). Estimating exposure effects by modelling the expectation of exposure conditional on confounders. Biometrics, 48, 479–495.
PubMed
Google Scholar
Rosner, B. (1984). Multivariate methods in ophthalmology with application to other paired-data situations. Biometrics, 40, 1025–1035.
PubMed
Google Scholar
Rothman, K., Greenland, S., & Lash, T. (2008). Modern epidemiology (3rd ed.). Philadelphia: Lippincott Williams & Wilkins.
Samejima, F. (1969). Estimation of ability using a response pattern of graded scores. Bowling Green: Psychometrika Monograph 17, Psychometric Society.
Sanathanan, L. (1972). Estimating the size of a multinomial population. Annals of Mathematical Statistics, 43, 142–152.
Google Scholar
Sartori, N., & Severini, T. (2004). Conditional likelihood inference in generalized linear mixed models. Statistica Sinica, 14, 349–360.
Google Scholar
Seaman, S., Galati, J., Jackson, D., & Carlin, J. (2013). What is meant by “missing at random” ? Statistical Science, 28, 257–268.
Seaman, S., Pavlou, M., & Copas, A. (2014). Review of methods for handling confounding by cluster and informative cluster size in clustered data. Statistics in Medicine, 33, 5371–5387.
PubMed
PubMed Central
Google Scholar
Sim, N. (2019). Beyond standard assumptions—semiparametric models, a dyadic item response theory model, and cluster-endogenous random intercept models. Ph.D. Dissertation, Berkeley: University of California.
Sjölander, A., Johansson, A., Lundholm, C., Altman, D., Almqvist, C., & Pawitan, Y. (2012). Analysis of 1:1 matched cohort studies and twin studies, with binary exposures and binary outcomes. Statistical Science, 27, 395–411.
Google Scholar
Sjölander, A., Frisell, T., Kuja-Halkola, R., Öberg, S., & Zetterquist, J. (2016). Carryover effects in sibling comparison designs. Epidemiology, 27, 852–858.
PubMed
Google Scholar
Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman & Hall/CRC.
Skrondal, A., & Rabe-Hesketh, S. (2009). Prediction in multilevel generalized linear models. Journal of the Royal Statistical Society, Series A, 172, 659–687.
Google Scholar
Skrondal, A., & Rabe-Hesketh, S. (2014). Protective estimation of mixed-effects logistic regression when data are not missing at random. Biometrika, 101, 175–188.
Google Scholar
Sobel, M. (2012). Does marriage boost men’s wages?: Identification of treatment effects from fixed effects regression models for panel data. Journal of the American Statistical Association, 107, 521–529.
Spanos, A. (2006). Where do statistical models come from? Revisiting the problem of specification. IMS Lecture Notes-Monograph Series 2nd Lehmann Symposium-Optimality, 49, 98–119.
Storer, B., Wacholder, S., & Breslow, N. (1983). Maximum likelihood fitting of general risk models to stratified data. Applied Statistics, 32, 172–181.
Google Scholar
Teachman, J., Duncan, G., Yeung, J., & Levy, D. (2001). Covariance structure models for fixed and random effects. Sociological Methods and Research, 30, 271–288.
Google Scholar
Ten Have, T., Kunselman, A., Pulkstenis, E., & Landis, J. (1998). Mixed effects logistic regression models for longitudinal binary response data with informative drop-out. Biometrics, 54, 367–383.
PubMed
Google Scholar
Thomas, A. (2006). Consistent estimation of binary-choice panel data models with heterogeneous linear trends. Econometrics Journal, 9, 177–195.
Google Scholar
Tibaldi, F., Verbeke, G., Molenberghs, G., Renard, D., van den Noortgate, W., & De Boeck, P. (2007). Conditional mixed models with crossed random effects. British Journal of Mathematical and Statistical Psychology, 60, 351–365.
Google Scholar
Tutz, G. (1990). Sequential item response models with an ordered response. British Journal of Mathematical and Statistical Psychology, 43, 39–55.
Google Scholar
Verbeke, G., & Lesaffre, E. (1997). The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data. Computational Statistics and Data Analysis, 23, 541–556.
Google Scholar
Verbeke, G., Spiessens, B., & Lesaffre, E. (2001). Conditional linear mixed models. American Statistician, 55, 25–34.
Google Scholar
Verhelst, N. (2019). Exponential family models for continuous responses. In B. Veldkamp & C. Sluijter (Eds.), Methodology of educational measurement and assessment (pp. 135–160). Springer.
Verhelst, N., & Glas, C. (1995). The one parameter logistic model. In G. Fischer & I. Molenaar (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 215–237). Springer.
Verma, T. & Pearl, J. (1988). Causal networks: Semantics and expressiveness. In: R. Schachter, T. Levitt, L. Kanal & J. Lemmer (Eds.), Proceedings of the 4th conference on uncertainty and artificial intelligence (pp. 69–76). Elsevier.
von Davier, M., & Rost, J. (1995). Polytomous mixed Rasch models. In G. Fischer & I. Molenaar (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 371–379). Springer.
Wang, M., Flanders, W., Bostick, R., & Long, Q. (2012). A conditional likelihood approach for regression analysis using biomarkers measured with batch-specific error. Statistics in Medicine, 31, 3896–3906.
PubMed
PubMed Central
Google Scholar
Warm, T. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427–450.
Google Scholar
Wooldridge, J. (1999). Distribution-free estimation of some nonlinear panel data models. Journal of Econometrics, 90, 77–97.
Google Scholar
Wooldridge, J. (2010). Econometric analysis of cross section and panel data (2nd ed.). MIT Press.
Wright, B., & Douglas, G. (1977). Best procedures for sample-free item analysis. Applied Psychological Measurement, 1, 281–294.
Google Scholar
Wu, M., & Carroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics, 44, 175–188.
Google Scholar
Zeger, S., Liang, K.-Y., & Albert, P. (1988). Models for longitudinal data: A generalized estimating equation approach. Biometrics, 44, 1049–1060.
PubMed
Google Scholar
Zetterqvist, J., Vermeulen, K., Vansteelandt, S., & Sjölander, A. (2019). Doubly robust conditional logistic regression. Statistics in Medicine, 38, 4749–4760.
PubMed
Google Scholar
Zhang, D., & Davidian, M. (2004). Likelihood and conditional likelihood inference for generalized additive mixed models for clustered data. Journal of Multivariate Analysis, 91, 90–106.
Google Scholar
Zwitser, R., & Maris, G. (2015). Conditional statistical inference with multistage testing designs. Psychometrika, 80, 65–84.
PubMed
Google Scholar