Skip to main content
Log in

Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A growing number of social scientists have turned to differential equations as a tool for capturing the dynamic interdependence among a system of variables. Current tools for fitting differential equation models do not provide a straightforward mechanism for diagnosing evidence for qualitative shifts in dynamics, nor do they provide ways of identifying the timing and possible determinants of such shifts. In this paper, we discuss regime-switching differential equation models, a novel modeling framework for representing abrupt changes in a system of differential equation models. Estimation was performed by combining the Kim filter (Kim and Nelson State-space models with regime switching: classical and Gibbs-sampling approaches with applications, MIT Press, Cambridge, 1999) and a numerical differential equation solver that can handle both ordinary and stochastic differential equations. The proposed approach was motivated by the need to represent discrete shifts in the movement dynamics of \(n= 29\) mother–infant dyads during the Strange Situation Procedure (SSP), a behavioral assessment where the infant is separated from and reunited with the mother twice. We illustrate the utility of a novel regime-switching differential equation model in representing children’s tendency to exhibit shifts between the goal of staying close to their mothers and intermittent interest in moving away from their mothers to explore the room during the SSP. Results from empirical model fitting were supplemented with a Monte Carlo simulation study to evaluate the use of information criterion measures to diagnose sudden shifts in dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This was accomplished by optimizing the log transformations of these parameters on an unconstrained scale, and upon convergence, obtaining the standard error estimates of the final, transformed (constrained) parameters via the delta method (Casella & Berger, 2001).

  2. An alternative form of Eq.  4 that may be easier to understand is one where all components of the equation are divided by dt, yielding the first derivatives of elements in \(\varvec{\eta }_i(t)\), namely, \(\frac{d\varvec{\eta }_i(t)}{dt}\), on the left-hand side of Eq. (4). The expression shown in 4 is, in the so-called Ito form, often adopted to highlight explicitly that the Wiener process is not differentiable with respect to time (i.e., \(\frac{d\varvec{w}_i(t)}{dt}\) is not defined as dt approaches zero; Arnold, 1974, Molenaar & Newell, 2003).

  3. These means and variance parameters could also be estimated as modeling parameters (see, e.g., Chow et al., 2016b). However, because these parameters were not of great substantive interest and with the large numbers of time points within participants in the current data set, slight misspecifications of the values and structures of these specific initial conditions were likely to have minimal impact on the overall estimation. Thus, they were fixed at heuristic, empirically determined values.

References

  • Ainsworth, M. D. S., Blehar, M. C., Waters, E., & Wall, S. (1978). Patterns of attachment: A psychological study of the strange situation. Oxford: Lawrence Erlbaum.

    Google Scholar 

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.

    Google Scholar 

  • Aptech Systems Inc. (2009). GAUSS (Version 10). WA: Black Diamond.

  • Arnold, L. (1974). Stochastic differential equations. New York: Wiley.

    Google Scholar 

  • Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2001). Estimation with applications to tracking and navigation: Theory algorithms and software. New York: Wiley.

    Book  Google Scholar 

  • Behrens, K. Y., Parker, A. C., & Haltigan, J. D. (2011). Maternal sensitivity assessed during the strange situation procedure predicts child’s attachment quality and reunion behaviors. Infant Behavior and Development, 34(2), 378–381.

    Article  PubMed  Google Scholar 

  • Beskos, A., Papaspiliopoulos, O., & Roberts, G. (2009). Monte carlo maximum likelihood estimation for discretely observed diffusion processes. The Annals of Statistics, 37(1), 223–245.

    Article  Google Scholar 

  • Boker, S. M., Deboeck, P. R., Edler, C., & Keel, P. K. (2010). Generalized local linear approximation of derivatives from time series. In S. Chow, E. Ferrer, & F. Hsieh (Eds.), Statistical methods for modeling human dynamics: An interdisciplinary dialogue (pp. 161–178). New York: Taylor & Francis.

    Google Scholar 

  • Boker, S. M., & Graham, J. (1998). A dynamical systems analysis of adolescent substance abuse. Multivariate Behavioral Research, 33, 479–507.

    Article  PubMed  Google Scholar 

  • Boker, S. M., Neale, H., Maes, H., Wilde, M., Spiegel, M., Brick, T., et al. (2011). Openmx: An open source extended structural equation modeling framework. Psychometrika, 76(2), 306–317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boker, S. M., Neale, M. C., & Rausch, J. (2008). Latent differential equation modeling with multivariate multi-occasion indicators. In K. van Montfort, H. Oud, & A. Satorra (Eds.), Recent developments on structural equation models: Theory and applications (pp. 151–174). Amsterdam: Kluwer.

    Google Scholar 

  • Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54, 579–616.

    Article  PubMed  Google Scholar 

  • Bowlby, J. (1973). Separation: Anxiety & anger. Attachment and Loss. (International psycho-analytical library no. 95) (Vol. 2). London: Hogarth Press.

    Google Scholar 

  • Bowlby, J. (1982). Attachment (2nd ed., Vol. 1). New York: Basic Books.

    Google Scholar 

  • Casella, G., & Berger, R. L. (2001). Statistical inference (2nd ed.). Pacific Grove: Duxbury Press.

    Google Scholar 

  • Chow, S.-M., Bendezú, J. J., Cole, P. M., & Ram, N. (2016a). A comparison of two- stage approaches for fitting nonlinear ordinary differential equation (ode) models with mixed effects. Multivariate Behavioral Research, 51(2–3), 154–184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chow, S.-M., Ferrer, E., & Nesselroade, J. R. (2007). An unscented kalman filter approach to the estimation of nonlinear dynamical systems models. Multivariate Behavioral Research, 42(2), 283–321.

    Article  PubMed  Google Scholar 

  • Chow, S.-M., Ho, M.-H. R., Hamaker, E. J., & Dolan, C. V. (2010). Equivalences and differences between structural equation and state-space modeling frameworks. Structural Equation Modeling, 17, 303–332.

    Article  Google Scholar 

  • Chow, S.-M., Lu, Z., Sherwood, A., & Zhu, H. (2016b). Fitting nonlinear ordinary differential equation models with random effects and unknown initial conditions using the stochastic approximation expectation maximization (SAEM) algorithm. Psychometrika, 81, 102–134.

    Article  PubMed  Google Scholar 

  • Chow, S.-M., & Zhang, G. (2013). Nonlinear regime-switching state-space (RSSS) models. Psychometrika: Application Reviews and Case Studies, 78(4), 740–768.

    Article  Google Scholar 

  • Chow, S.-M., Zu, J., Shifren, K., & Zhang, G. (2011). Dynamic factor analysis models with time-varying parameters. Multivariate Behavioral Research, 46(2), 303–339.

    Article  PubMed  Google Scholar 

  • Collins, L. M., & Wugalter, S. E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 28, 131–157.

    Article  Google Scholar 

  • Deboeck, P. R. (2010). Estimating dynamical systems: Derivative estimation hints from Sir Ronald A Fisher. Multivariate Behavioral Research, 45, 725–745.

    Article  PubMed  Google Scholar 

  • Dijkstra, T. K. (1992). On statistical inference with parameter estimates on the boundary of the parameter space. British Journal of Mathematical and Statistical Psychology, 45(2), 289–309.

    Article  Google Scholar 

  • Dolan, C. V. (2009). Structural equation mixture modeling. In R. E. Millsap & A. Maydeu-Olivares (Eds.), The SAGE handbook of quantitative methods in psychology (pp. 568–592). Thousand Oaks: Sage.

    Chapter  Google Scholar 

  • Dolan, C. V., & Molenaar, P. C. M. (1991). A note on the calculation of latent trajectories in the quasi Markov simplex model by means of regression method and the discrete kalman filter. Kwantitatieve Methoden, 38, 29–44.

    Google Scholar 

  • Dolan, C. V., Schmittmann, V. D., Lubke, G. H., & Neale, M. C. (2005). Regime switching in the latent growth curve mixture model. Structural Equation Modeling, 12(1), 94–119.

    Article  Google Scholar 

  • Doornik, J. A. (1998). Object-oriented matrix programming using Ox 2.0. London: Timberlake Consultants Press.

    Google Scholar 

  • Durbin, J., & Koopman, S. J. (2001). Time series analysis by state space methods. New York: Oxford University Press.

    Google Scholar 

  • Elliott, R. J., Aggoun, L., & Moore, J. (1995). Hidden markov models: Estimation and control. New York: Springer.

    Google Scholar 

  • Enders, C., & Tofighi, D. (2008). The impact of misspecifying class-specific residual variances in growth mixture models. Structural Equation Modeling: A Multidisciplinary Journal, 15, 75–95.

    Article  Google Scholar 

  • Fahrmeir, L., & Tutz, G. (2001). Multivariate statistical modelling based on generalized linear models. Berlin: Springer.

    Book  Google Scholar 

  • Fukuda, K., & Ishihara, K. (1997). Development of human sleep and wakefulness rhythm during the first six months of life: Discontinuous changes at the 7th and 12th week after birth. Biological Rhythm Research, 28, 94–103.

    Article  Google Scholar 

  • Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. Neuroimage, 63, 310–319.

    Article  PubMed  Google Scholar 

  • Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57, 357–384.

    Article  Google Scholar 

  • Harvey, A. C. (2001). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jackson, C. H. (2011). Multi-state models for panel data: The msm package for R. Journal of Statistical Software, 38(8), 1–29.

    Article  Google Scholar 

  • Jazwinski, A. H. (1970). Stochastic processes and filtering theory. New York: Academic Press.

    Google Scholar 

  • Jones, R. H. (1993). Longitudinal data with serial correlation: A state-space approach. Boca Raton: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. In Trans. ASME, Ser. D, J. Basic Eng, p 109.

  • Kim, C.-J., & Nelson, C. R. (1999). State-space models with regime switching: Classical and Gibbs-sampling approaches with applications. Cambridge: MIT Press.

    Google Scholar 

  • Kulikov, G., & Kulikova, M. (2014). Accurate numerical implementation of the continuous-discrete extended Kalman filter. IEEE Transactions on Automatic Control, 59(1), 273–279.

    Article  Google Scholar 

  • Kulikova, M. V., & Kulikov, G. Y. (2014). Adaptive ODE solvers in extended Kalman filtering algorithms. Journal of Computational and Applied Mathematics, 262, 205–216.

    Article  Google Scholar 

  • Lanza, S. T., & Collins, L. M. (2008). A new SAS procedure for latent transition analysis: Transitions in dating and sexual risk behavior. Developmental Psychology, 44(2), 446–456.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawley, D. N., & Maxwell, M. A. (1971). Factor analysis as a statistical method (2nd ed.). London: Butterworths.

    Google Scholar 

  • Lu, Z.-H., Chow, S.-M., Sherwood, A., & Zhu, H. (2015). Bayesian analysis of ambulatory cardiovascular dynamics with application to irregularly spaced sparse data. Annals of Applied Statistics, 9, 1601–1620.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mbalawata, I. S., Särkkä, S., & Haario, H. (2013). Parameter estimation in stochastic differential equations with markov chain monte carlo and non-linear Kalman filtering. Computational Statistics, 28(3), 1195–1223.

    Article  Google Scholar 

  • Miao, H., Xin, X., Perelson, A. S., & Wu, H. (2011). On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Review, 53(1), 3–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific pyschology-this time forever. Measurement: Interdisciplinary Research and Perspectives, 2, 201–218.

    Google Scholar 

  • Molenaar, P. C. M., & Newell, K. M. (2003). Direct fit of a theoretical model of phase transition in oscillatory finger motions. British Journal of Mathematical and Statistical Psychology, 56, 199–214.

    Article  PubMed  Google Scholar 

  • Muthén, B. O., & Asparouhov, T. (2011). LTA in Mplus: Transition probabilities influenced by covariates. Mplus web notes: No. 13. Available at http://www.statmodel.com/examples/LTAwebnote.pdf. Accessed 23 July 2016.

  • Muthén, L. K., & Muthén, B. O. (2001). Mplus: The comprehensive modeling program for applied researchers: User’s guide (1998–2001). Los Angeles: Muthén & Muthén.

    Google Scholar 

  • Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535–569.

    Article  Google Scholar 

  • Nylund-Gibson, K., Muthén, B. O., Nishina, A., Bellmore, A., & Graham, S. (2013). Stability and instability of peer victimization during middle school: Using latent transition analysis with covariates, distal outcomes, and modeling extensions. Manuscript submitted for publication.

  • Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2009). A hierarchical Ornstein-Uhlenbeck model for continuous repeated measurement data. Psychometrika, 74, 395–418.

    Article  Google Scholar 

  • Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A hierarchical latent stochastic differential equation model for affective dynamics. Psychological Methods, 16, 468–490.

    Article  PubMed  Google Scholar 

  • Ou, L., Hunter, M. D., & Chow, S.-M. (2016). dynr: Dynamic Modeling in R. R package version 0.1.7-22.

  • Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65(2), 199–215.

    Article  Google Scholar 

  • Oud, J. H. L., & Singer, H., (Eds.) (2008). Special issue: Continuous time modeling of panel data, Vol. 62.

  • Oud, J. H. L., van den Bercken, J. H., & Essers, R. J. (1990). Longitudinal factor score estimation using the Kalman filter. Applied psychological measurement, 14, 395–418.

    Article  Google Scholar 

  • Piaget, J., & Inhelder, B. (1969). The psychology of the child. New York: Basic Books.

    Google Scholar 

  • Pincus, S., Gladstone, I., & Ehrenkranz, R. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7, 335–345.

    Article  PubMed  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2002). Numerical recipes in C. Cambridge: Cambridge University Press.

    Google Scholar 

  • R Development Core Team (2009). R: A language and environment for statistical computing. Vienna: Austria. ISBN: 3-900051-07-0.

  • Ramsay, J. O., Hooker, G., Campbell, D., & Cao, J. (2007). Parameter estimation for differential equations: a generalized smoothing approach (with discussion). Journal of Royal Statistical Society: Series B, 69(5), 741–796.

    Article  Google Scholar 

  • Särkkä, S. (2013). Bayesian Filtering and Smoothing. Hillsdale: Cambridge University Press.

    Book  Google Scholar 

  • SAS Institute Inc. (2008). SAS 9.2 help and documentation. Cary, NC.

  • Schmittmann, V. D., Dolan, C. V., van der Maas, H., & Neale, M. C. (2005). Discrete latent Markov models for normally distributed response data. Multivariate Behavioral Research, 40(2), 207–233.

    Article  Google Scholar 

  • Schwartz, J. E., & Stone, A. A. (1998). Strategies for analyzing ecological momentary assessment data. Health Psychology, 17, 6–16.

    Article  PubMed  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Schweppe, F. (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Transactions on Information Theory, 11, 61–70.

    Article  Google Scholar 

  • Shapiro, A. (1985). Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrics, 72(1), 133–44.

    Article  Google Scholar 

  • Shapiro, A. (1986). Asymptotic theory or overparameterized structural models. American Statistical Association Journal, 81(393), 142–149.

    Article  Google Scholar 

  • Sherwood, A., Thurston, R., Steffen, P., Blumenthal, J. A., Waugh, R. A., & Hinderliter, A. L. (2001). Blunted nighttime blood pressure dipping in postmenopausal women. American Journal of Hypertension, 14, 749–754.

    Article  PubMed  Google Scholar 

  • Singer, H. (2002). Parameter estimation of nonlinear stochastic differential equations: Simulated maximum likelihood vs. extended Kaman filter and itô-Taylor expansion. Journal of Computational and Graphical Statistics, 11, 972–995.

    Article  Google Scholar 

  • Singer, H. (2003). Nonlinear continuous discrete filtering using kernel density estimates and functional integrals. Journal of Mathematical Sociology, 27, 1–28.

    Article  Google Scholar 

  • Singer, H. (2010). Sem modeling with singular moment matrices part i: Ml-estimation of time series. The Journal of Mathematical Sociology, 34(4), 301–320.

    Article  Google Scholar 

  • Singer, H. (2012). Sem modeling with singular moment matrices part ii: Ml-estimation of sampled stochastic differential equations. The Journal of Mathematical Sociology, 36(1), 22–43.

    Article  Google Scholar 

  • Sivalingam, R., Cherian, A., Fasching, J., Walczak, N., Bird, N., Morellas, V., Murphy, B., Cullen, K., Lim, K., Sapiro, G., & Papanikolopoulos, N. (2012). A multi-sensor visual tracking system for behavior monitoring of at-risk children. In IEEE international conference on robotics and automation (ICRA).

  • Tofghi, D., & Enders, C. K. (2007). Identifying the correct number of classes in mixture models. In G. R. Hancock & K. M. Samulelsen (Eds.), Advances in latent variable mixture models (pp. 317–341). Greenwich: Information Age.

    Google Scholar 

  • Trail, J. B., Collins, L. M., Rivera, D. E., Li, R., Piper, M. E., & Baker, T. B. (2013). Functional data analysis for dynamical system identification of behavioral processes. Psychological Methods, 19, 175–182.

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Maas, H. L. J., & Molenaar, P. C. M. (1992). Stagewise cognitive development: An application of catastrophe theory. Psychological Review, 99(3), 395–417.

    Article  PubMed  Google Scholar 

  • Van Geert, P. (2000). The dynamics of general developmental mechanisms: From Piaget and Vygotsky to dynamic systems models. Current Directions in Psychological Science, 9(2), 64–68.

    Article  Google Scholar 

  • Vecchiato, W. (1997). New models for irregularly spaced time series analysis with applications to high frequency financial data. In Proceedings of the IEEE/IAFE 1997 computational intelligence for financial engineering (CIFEr), pp. 144–149.

  • Visser, I. (2007). Depmix: An R-package for fitting mixture models on mixed multivariate data with markov dependencies. Technical report, University of Amsterdam.

  • Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An sem approach to continuous time modeling of panel data: relating authoritarianism and anomia. Psychological Methods, 17, 176–192.

    Article  PubMed  Google Scholar 

  • Waters, E. (2002). Comments on strange situation classification. Retrieved on May 1, 2012 from http://www.johnbowlby.com.

  • Yang, M., & Chow, S.-M. (2010). Using state-space model with regime switching to represent the dynamics of facial electromyography (EMG) data. Psychometrika: Application and Case Studies, 74(4), 744–771.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sy-Miin Chow.

Additional information

Funding for this study was provided by NSF Grant SES-1357666, NIH Grant R01GM105004, Penn State Quantitative Social Sciences Initiative and UL TR000127 from the National Center for Advancing Translational Sciences.

Electronic supplementary material

Appendices

Appendix

Sample dynr Code

The R package, dynr, can be downloaded from CRAN. Here, we include some sample codes for fitting the empirically motivated model in Eqs. 13 to simulated data.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, SM., Ou, L., Ciptadi, A. et al. Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching. Psychometrika 83, 476–510 (2018). https://doi.org/10.1007/s11336-018-9605-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-018-9605-1

Keywords

Navigation