Skip to main content
Log in

A Hierarchical Ornstein–Uhlenbeck Model for Continuous Repeated Measurement Data

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In this paper, we present a diffusion model for the analysis of continuous-time change in multivariate longitudinal data. The central idea is to model the data from a single person with an Ornstein–Uhlenbeck diffusion process. We extend it hierarchically by allowing the parameters of the diffusion process to vary randomly over different persons. With this approach, both intra and interindividual differences are analyzed simultaneously. Furthermore, the individual difference parameters can be regressed on covariates, thereby providing an explanation of between-person differences. Unstructured and unbalanced data pose no problem for the model to be applied. We demonstrate the method on data from an experience sampling study to investigate changes in the core affect. It can be concluded that different factors from the five factor model of personality are related to features of the trajectories in the core affect space, such as the cross-correlation and variability of the changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, L. (1974). Stochastic differential equations: Theory and applications. New York: Wiley.

    Google Scholar 

  • Barnard, J., McCulloch, R.E., & Meng, X.L. (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica, 10, 1281–1311.

    Google Scholar 

  • Blackwell, P.G. (1997). Random diffusion models for animal movements. Ecological Modelling, 100, 87–102.

    Article  Google Scholar 

  • Blackwell, P.G. (2003). Bayesian inference for Markov processes with diffusion and discrete components. Biometrika, 90, 613–627.

    Article  Google Scholar 

  • Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54, 579–616.

    Article  PubMed  Google Scholar 

  • Bollen, K.A. (1989). Structural equations with latent variables. New Jersey: Wiley.

    Google Scholar 

  • Borkenau, P., & Ostendorf, F. (1998). The big five as states: How useful is the five-factor model to describe intraindividual variations over time? Journal of Research in Personality, 32, 202–221.

    Article  Google Scholar 

  • Brillinger, D.R., Preisler, H.K., Ager, A.A., & Kie, J.G. (2004). An exploratory data analysis (EDA) of the paths of moving animals. Journal of Statistical Planning and Inference, 122, 43–63.

    Article  Google Scholar 

  • Brockwell, P.J., & Davis, R.A. (2002). Introduction to time series and forecasting. New York: Springer.

    Google Scholar 

  • Cox, D.R., & Miller, H.D. (1972). The theory of stochastic processes. London: Chapman & Hall.

    Google Scholar 

  • Csikszentmihalyi, M., & Larson, R. (1987). Validity and reliability of the experience sampling method. The Journal of Nervous and Mental Disease, 175, 526–536.

    Article  PubMed  Google Scholar 

  • Daniels, M., & Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika, 89, 553–566.

    Article  Google Scholar 

  • De Boeck, P., & Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York: Springer.

    Google Scholar 

  • De la Cruz-Mesía, R., Marshall, G. (2006). Non-linear random effects models with continuous time autoregressive errors: a Bayesian approach. Statistics in Medicine, 25, 1471–1784.

    Article  PubMed  Google Scholar 

  • Delsing, M.J.M.H., Oud, J.H.L., & Bruyn, E.E.J. (2005). Assessment of bidirectional influences between family relationships and adolescent problem behavior: Discrete vs. continuous time analysis. European Journal of Psychological Assessment, 21, 226–231.

    Article  Google Scholar 

  • Diggle, P.J., Heagerty, P., Liang, K.Y., & Zeger, S.L. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Dunn, J.E., & Gipson, P.S. (1977). Analysis of radio telemetry data in studies of home range. Biometrics, 33, 85–101.

    Article  Google Scholar 

  • Ferrer, E., & Nesselroade, J.R. (2003). Modeling affective processes in dyadic relations via dynamic factor analysis. Emotion, 3, 344–360.

    Article  PubMed  Google Scholar 

  • Gelman, A., Goegebeur, Y., Tuerlinckx, F., & Van Mechelen, I. (2000). Diagnostic checks for discrete-data regression models using posterior predicitive simulations. Journal of the Royal Statistical Society Series C—Applied Statistics, 49, 247–268.

    Article  Google Scholar 

  • Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2004). Bayesian data analysis. New York: Chapman & Hall.

    Google Scholar 

  • Goldstein, H. (2003). Multilevel statistical models. London: Arnold.

    Google Scholar 

  • Hoekstra, H.A., Ormel, J., & De Fruyt, F. (1996). NEO PI-R, NEO FFI Big five persoonlijkheidsvragenlijsten: Handleiding [NEO PI-R, NEO FFI Big five personality questionnaire: Manual]. Lisse, The Netherlands: Swets & Zeitlinger B.V.

  • Karlin, S., & Taylor, H. (1981). A second course in stochastic processes. New York: Academic Press.

    Google Scholar 

  • Kuppens, P., Van Mechelen, I., Nezlek, J.B., Dossche, D., & Timmermans, T. (2007). Individual differences in core affect variability and their relationship to personality and adjustment. Emotion, 7, 262–274.

    Article  PubMed  Google Scholar 

  • Larsen, R.J. (2000). Toward a science of mood regulation. Psychological Inquiry, 11, 129–141.

    Article  Google Scholar 

  • Larson, R., & Csikszentmihalyi, M. (1983). The experience sampling method. New Directions for Methodology of Social and Behavioral Science, 15, 41–56.

    Google Scholar 

  • Li, S.C., Huxhold, O., & Schmiedek, F. (2004). Aging and attenuated processing robustness: Evidence from cognitive and sensorimotor functioning. Gerontology, 50, 28–34.

    Article  PubMed  Google Scholar 

  • Little, R.J., & Rubin, D.B. (2002). Statistical analysis with missing data. New York: Wiley.

    Google Scholar 

  • Lykken, D.T., & Tellegen, A. (1996). Happiness is a stochastic phenomenon. Psychological Science, 7, 186–189.

    Article  Google Scholar 

  • Mood, A.M., Graybill, F.A., & Boes, D.C. (1974). Introduction to the theory of statistics. New York: McGraw-Hill.

    Google Scholar 

  • Oud, J.H.L. (2002). Continuous time modeling of the crossed-lagged panel design. Kwantitatieve Methoden, 69, 1–26.

    Google Scholar 

  • Oud, J.H.L. (2007). Comparison of four procedures to estimate the damped linear differential oscillator for panel data. In K. van Montfort, J. Oud, & A. Satorra (Eds.), Longitudinal models in the behavioral and related sciences (pp. 19–40). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Oud, J.H.L., & Singer, H. (2008). Continuous time modeling of panel data: Sem versus filter techniques. Statistica Neerlandica, 62, 4–28.

    Google Scholar 

  • Raudenbush, S.W., & Bryk, A.S. (2002). Hierarchical linear models: Applications and data analysis methods. Newbury Park: Sage.

    Google Scholar 

  • Robert, C.P., & Casella, G. (2004). Monte Carlo statistical methods. New York: Springer.

    Google Scholar 

  • Russell, J.A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110, 145–172.

    Article  PubMed  Google Scholar 

  • Russell, J.A., & Feldman-Barrett, L. (1999). Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of Personality and Social Psychology, 76, 805–819.

    Article  PubMed  Google Scholar 

  • Russell, J.A., Weiss, A., & Mendelssohn, G.A. (1989). Affect grid: A single-item scale of pleasure and arousal. Journal of Personality and Social Psychology, 57, 493–502.

    Article  Google Scholar 

  • Schach, S. (1971). Weak convergence results for a class of multivariate Markov processes. The Annals of Mathematical Statistics, 42, 451–465.

    Article  Google Scholar 

  • Singer, H. (2008). Nonlinear continuous time modeling approaches in panel research. Statistica Neerlandica, 62, 29–57.

    Google Scholar 

  • Smith, P.L. (2000). Stochastic, dynamic models of response times and accuracy: A foundational primer. Journal of Mathematical Psychology, 44, 408–463.

    Article  PubMed  Google Scholar 

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 6, 583–640.

    Article  Google Scholar 

  • Sy, J.P., Taylor, J.M.G., & Cumberland, W.G. (1997). A stochastic model for the analysis of bivariate longitudinal AIDS data. Biometrics, 53, 542–555.

    Article  PubMed  Google Scholar 

  • Taylor, J.M.G., Cumberland, W.G., & Sy, J.P. (1994). A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association, 89, 727–736.

    Article  Google Scholar 

  • van Montfort, K., Oud, J., & Satorra, A. (2007). Longitudinal models in the behavioral and related sciences. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York: Springer.

    Google Scholar 

  • Walls, T.A., & Schafer, J.L. (2006). Models for intensive longitudinal data. New York: Oxford University Press.

    Google Scholar 

  • Zellner, A. (1971). An introduction to Bayesian inference in econometrics. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zita Oravecz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oravecz, Z., Tuerlinckx, F. & Vandekerckhove, J. A Hierarchical Ornstein–Uhlenbeck Model for Continuous Repeated Measurement Data. Psychometrika 74, 395–418 (2009). https://doi.org/10.1007/s11336-008-9106-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-008-9106-8

Keywords

Navigation