Skip to main content
Log in

A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Preference rankings usually depend on the characteristics of both the individuals judging a set of objects and the objects being judged. This topic has been handled in the literature with log-linear representations of the generalized Bradley-Terry model and, recently, with distance-based tree models for rankings. A limitation of these approaches is that they only work with full rankings or with a pre-specified pattern governing the presence of ties, and/or they are based on quite strict distributional assumptions. To overcome these limitations, we propose a new prediction tree method for ranking data that is totally distribution-free. It combines Kemeny’s axiomatic approach to define a unique distance between rankings with the CART approach to find a stable prediction tree. Furthermore, our method is not limited by any particular design of the pattern of ties. The method is evaluated in an extensive full-factorial Monte Carlo study with a new simulation design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amodio, S., D’Ambrosio, A., & Siciliano, R. (2016). Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach. European Journal of Operational Research, 249(2), 667–676.

    Article  Google Scholar 

  • Ben-Israel, A., & Iyigun, C. (2008). Probabilistic distance clustering. Journal of Classification, 25, 5–26.

    Article  Google Scholar 

  • Böckenholt, U. (2001). Mixed-effects analysis of rank-ordered data. Psychometrika, 77, 45–62.

    Article  Google Scholar 

  • Bradley, R. A., & Terry, M. A. (1952). Rank analysis of incomplete block designs, I. Biometrika, 39, 324–345.

    Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont, CA: Wadsworth International Group.

    Google Scholar 

  • Busing, F. M. T. A. (2009). Some Advances in Multidimensional Unfolding. Doctoral Dissertation, Leiden, The Netherlands: Leiden University.

  • Busing, F. M. T. A., Groenen, P. J. F., & Heiser, W. J. (2005). Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika, 70, 71–98.

    Article  Google Scholar 

  • Busing, F. M. T. A., Heiser, W. J., & Cleaver, G. (2010). Restricted unfolding: Preference analysis with optimal transformations of preferences and attributes. Food Quality and Preference, 21, 82–92.

    Article  Google Scholar 

  • Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard, et al. (Eds.), Multidimensional scaling theory (Vol. I, pp. 105–155). New York: Seminar Press.

    Google Scholar 

  • Chapman, R. G., & Staelin, R. (1982). Exploiting rank order choice set data within the stochastic utility model. Journal of Market Research, 19, 288–301.

    Article  Google Scholar 

  • Cheng, W., Hühn, J., & Hüllermeier, E. (2009). Decision Tree and Instance-Based Learning for Label Ranking. Proceedings ICML-2009, 26th International Conference on Machine Learning, pp. 161–168, Montreal.

  • Coombs, C. H. (1950). Psychological scaling without a unit of measurement. Psychological Review, 57, 145–158.

    Article  PubMed  Google Scholar 

  • Coombs, C. H. (1964). A theory of data. New York: Wiley.

    Google Scholar 

  • Critchlow, D. E. (1985). Metric methods for analyzing partially ranked data (Vol. 34)., Lecture Notes in Statistics Berlin: Springer.

    Google Scholar 

  • Critchlow, D. E., Fligner, M. A., & Verducci, J. S. (1991). Probability models on rankings. Journal of Mathematical Psychology, 35, 294–318.

    Article  Google Scholar 

  • Croon, M. A. (1989). Latent class models for the analysis of rankings. In G. De Soete, et al. (Eds.), New developments in psychological choice modeling (pp. 99–121). North-Holland: Elsevier.

    Chapter  Google Scholar 

  • D’Ambrosio, A. (2008). Tree-based methods for data editing and preference rankings. Doctoral dissertation. Naples, Italy: Department of Mathematics and Statistics. http://www.fedoa.unina.it/2746/.

  • D’Ambrosio, A., Amodio, S., & Iorio, C. (2015). Two algorithms for finding optimal solutions of the Kemeny rank aggregation problem for full rankings. Electronic Journal of Applied Statistical Analysis, 8(2), 198–213.

    Google Scholar 

  • Diaconis, P. (1988). Group Representations in Probability and Statistics. Hayward, CA: Institute of Mathematical Statistics.

    Google Scholar 

  • De’ath, G. (2002). Multivariate regression trees: A new technique for modeling species-environment relationships. Echology, 83(4), 1105–1117.

    Google Scholar 

  • Ditrich, R., Hatzinger, R., & Katzenbeisser, W. (1998). Modelling the effect of subject-specific covariates in paired comparison studies with an application to university rankings. Journal of the Royal Statistical Society C, 47, 511–525.

    Article  Google Scholar 

  • Ditrich, R., Katzenbeisser, W., & Hatzinger, R. (2000). The analysis of rank order preference data based on Bradley-Terry Type models. OR Spectrum, 22, 117–134.

    Article  Google Scholar 

  • Dusseldorp, E., & Meulman, J. J. (2004). The regression trunk approach to discover treatment covariate interaction. Psychometrika, 69(3), 355–374.

    Article  Google Scholar 

  • Emond, E. J., & Mason, D. W. (2000), A new technique for high level decision support. ORD project Report PR2000/13 Department of National Defence, Canada.

  • Emond, E. J., & Mason, D. W. (2002). A new rank correlation coefficient with application to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis, 11, 17–28.

    Article  Google Scholar 

  • Feigin, P. D., & Cohen, A. (1978). On a model for concordance between judges. Journal of the Royal Statistical Society, B, 40(2), 203–213.

    Google Scholar 

  • Fligner, M. A., & Verducci, J. S. (1986). Distance based ranking models. Journal of the Royal Statistical Society, Series B, 48, 359–369.

    Google Scholar 

  • Fligner, M. A., & Verducci, J. S. (1988). Multistage rankings models. Journal of the American Statistical Association, 83, 892–901.

    Article  Google Scholar 

  • Francis, B., Dittrich, R., Hatzinger, R., & Penn, R. (2002). Analysing partial ranks by using smoothed paired comparison methods: An investigation of value orientation in Europe. Applied Statistics, 51, 319–336.

    Google Scholar 

  • Fürnkranz, J., & Hüllermeier, E. (2011). Preference learning. Berlin: Springer.

    Book  Google Scholar 

  • Gormley, I. C., & Murphy, T. B. (2008). Exploring voting blocs within the Irish electorate: A mixture modeling approach. Journal of the American Statistical Association, 103, 1014–1027.

    Article  Google Scholar 

  • Gormley, I. C., & Murphy, T. B. (2008b). A mixture of experts model for rank data with applications in election studies. The Annals of Applied Statistics, 4(2), 1452–1477.

    Article  Google Scholar 

  • Gross, O. A. (1962). Preferential arrangements. The American Mathematical Monthly, 69, 1–4.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The Elements of Statistical Learning. New York: Springer.

    Book  Google Scholar 

  • Heiser, W. J. (2004). Geometric representation of association between categories. Psychometrica, 69(4), 513–545.

    Article  Google Scholar 

  • Heiser, W.J., & D’Ambrosio, A. (2013). Clustering and prediction of rankings within a Kemeny distance framework. In B, Lausen, D., Van den Poel, Ultsch, A. (Eds.), Algorithms from and for Nature and Life, Springer series in Studies in Classification, Data Analysis, and Knowledge Organization, 19-31, Springer International Publishing Switzerland.

  • Heiser, W. J., & De Leeuw, J. (1981). Multidimensional mapping of preference data. Mathématiques et Sciences Humaines, 19, 39–96.

    Google Scholar 

  • Inglehart, R. (1977). The silent revolution: Changing values and political styles among Western Publics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Kemeny, J. G. (1959). Mathematics without numbers. Daedalus, 88, 577–591.

    Google Scholar 

  • Kemeny, J. G., & Snell, L. (1962). Mathematical models in the social sciences. Boston: Ginn and Company.

    Google Scholar 

  • Kendall, M. (1948). Rank correlation methods. London: Charles Griffin & Company Limited.

    Google Scholar 

  • Larsen, D. R., & Speckman, C. L. (2004). Multivariate regression trees for analysis of abundance data. Biometrics, 60, 543–459.

    Article  PubMed  Google Scholar 

  • Lee, P. H., & Yu, P. L. H. (2010). Distance-based tree models for ranking data. Computational Statistics and Data Analysis, 54, 1672–1682.

    Article  Google Scholar 

  • Luce, R. D. (1959). Individual choice behavior. New York: Wiley.

    Google Scholar 

  • Mallows, C. L. (1957). Non-null ranking models, I. Biometrika, 44, 114–130.

    Article  Google Scholar 

  • Marden, J. I. (1995). Analyzing and modelling rank data. London: Chapman & Hall.

    Google Scholar 

  • Meulman, J. J., Van Der Kooij, A. J., & Heiser, W. J. (2004). Principal components analysis with nonlinear optimal scaling transformations for ordinal and nominal data. In D. Kaplan (Ed.), The SAGE handbook of quantitative methodology for the social sciences (pp. 49–70). Thousand Oaks: Sage.

    Google Scholar 

  • Murphy, T. B., & Martin, D. (2003). Mixtures of distance-based models for ranking data. Computational Statistics and Data Analysis, 41(3), 645–655.

    Article  Google Scholar 

  • Nerini, D., & Ghattas, B. (2007). Classifying densities using functional regression trees: Applications in oceanology. Computational Statistics and Data Analysis, 51, 4984–4993.

    Article  Google Scholar 

  • Siciliano, R., & Mola, F. (2000). Multivariate data analysis and modelling through classification and regression trees. Computational Statistics and Data Analysis, 32, 285–301.

    Article  Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68(2), 267–287.

    Article  Google Scholar 

  • Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14(4), 323–348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strobl, C., Wickelmaier, F., & Zeileis, A. (2011). Accounting for individual differences in Bradley-Terry models by means of recursive partitioning. Journal of Educational and Behavioral Statistics, 36(2), 135–153.

    Google Scholar 

  • Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34, 273–286.

    Article  Google Scholar 

  • van Blokland-Vogelesang, R. (1990), Unfolding and group consensus ranking for individual preferences. Unpublished PhD thesis, University of Leiden.

  • Van Deun, K., Heiser, W. J., & Delbeke, L. (2007). Multidimensional unfolding by nonmetric multidimensional scaling of Spearman distances in the extended permutation polytope. Multivariate Behavioral Research, 42, 103–132.

    Article  PubMed  Google Scholar 

  • Vermunt, J. K. (2003). Multilevel latent class models. Sociological Methodology, 33(1), 213–239.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their helpful comments, which have helped us to greatly improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio D’Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Ambrosio, A., Heiser, W.J. A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances. Psychometrika 81, 774–794 (2016). https://doi.org/10.1007/s11336-016-9505-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-016-9505-1

Keywords

Navigation