Skip to main content
Log in

Consistency of Cluster Analysis for Cognitive Diagnosis: The Reduced Reparameterized Unified Model and the General Diagnostic Model

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The asymptotic classification theory of cognitive diagnosis (ACTCD) provided the theoretical foundation for using clustering methods that do not rely on a parametric statistical model for assigning examinees to proficiency classes. Like general diagnostic classification models, clustering methods can be useful in situations where the true diagnostic classification model (DCM) underlying the data is unknown and possibly misspecified, or the items of a test conform to a mix of multiple DCMs. Clustering methods can also be an option when fitting advanced and complex DCMs encounters computational difficulties. These can range from the use of excessive CPU times to plain computational infeasibility. However, the propositions of the ACTCD have only been proven for the Deterministic Input Noisy Output “AND” gate (DINA) model and the Deterministic Input Noisy Output “OR” gate (DINO) model. For other DCMs, there does not exist a theoretical justification to use clustering for assigning examinees to proficiency classes. But if clustering is to be used legitimately, then the ACTCD must cover a larger number of DCMs than just the DINA model and the DINO model. Thus, the purpose of this article is to prove the theoretical propositions of the ACTCD for two other important DCMs, the Reduced Reparameterized Unified Model and the General Diagnostic Model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayers, E., Nugent, R., & Dean, N. (2008). Skill set profile clustering based on student capability vectors computed from online tutoring data. In R. S. J. de Baker, T. Barnes, & J. E. Beck (Eds.), Educational data mining 2008: Proceedings of the 1st International conference on educational data mining, Montreal, QC, Canada (pp. 210–217). Retrieved from http://www.educationaldatamining.org/EDM2008/uploads/proc/full%20proceedings.

  • Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633–665.

    Article  Google Scholar 

  • Chiu, C.-Y., & Köhn, H.-F. (2015a). Consistency of cluster analysis for cognitive diagnosis: The DINO model and the DINA model revisited. Applied Psychological Measurement, 39, 465–479.

  • Chiu, C.-Y., & Köhn, H.-F. (2015b). The Reduced RUM as a logit model: Parameterization and constraints. Psychometrika. doi:10.1007/s11336-015-9460-2.

  • Chiu, C.-Y., & Ma, W. (2013). ACTCD: Asymptotic classification theory for cognitive diagnosis. R package version 1.0-0. Retrieved from the Comprehensive R Archive Network [CRAN] website http://cran.r-project.org/web/packages/ACTCD/.

  • de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.

    Article  Google Scholar 

  • DiBello, L. V., Roussos, L. A., & Stout, W. F. (2007). Review of cognitively diagnostic assessment and a summary of psychometric models. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 979–1030). Amsterdam: Elsevier.

    Google Scholar 

  • DiBello, L. V., Stout, W. F., & Roussos, L. A. (1995). Unified cognitive/psychometric diagnostic assessment likelihood-based classification techniques. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 361–389). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • DiBello, L., Stout, W., Roussos, L., Templin, J., Chen, H., Zapata, D., et al. (2010). Arpeggio documentation and analysis manual. Chicago, IL: Applied Informative Assessment Research Enterprise (AIARE)-LLC.

    Google Scholar 

  • Feng, Y., Habing, B. T., & Huebner, A. (2014). Parameter estimation of the Reduced RUM using the EM algorithm. Applied Psychological Measurement, 38, 137–150.

    Article  Google Scholar 

  • Haberman, S. J., & von Davier, M. (2007). Some notes on models for cognitively based skills diagnosis. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 1031–1038). Amsterdam: Elsevier.

    Google Scholar 

  • Hartigan, J. A. (1975). Clustering algorithms. New York: Wiley.

    Google Scholar 

  • Hartz, S. M. (2002). A Bayesian framework for the Unified Model for assessing cognitive abilities: Blending theory with practicality (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 3044108)

  • Hartz, S. M., & Roussos, L. A. (October 2008). The Fusion Model for skill diagnosis: Blending theory with practicality. (Research report No. RR-08-71). Princeton, NJ: Educational Testing Service.

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.

    Article  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.

    Article  Google Scholar 

  • Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241–254.

    Article  PubMed  Google Scholar 

  • Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.

    Article  Google Scholar 

  • Leighton, J., & Gierl, M. (2007). Cognitive diagnostic assessment for education: Theory and applications. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique, and future directions. Statistics in Medicine, 28, 3049–3067.

    Article  PubMed  Google Scholar 

  • Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Educational Statistics, 2, 99–120.

    Article  Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus User’s guide (7th ed.). Los Angeles: Muthén & Muthén.

  • Robitzsch, A., Kiefer, T., George, A. C., & Uenlue, A. (2015). CDM: Cognitive diagnosis modeling. R package version 3.1-14. Retrieved from the Comprehensive R Archive Network [CRAN] website http://CRAN.R-project.org/package=CDM

  • Rupp, A. A., Templin, J. L., & Henson, R. A. (2010). Diagnostic measurement. Theory, methods, and applications. New York: Guilford.

    Google Scholar 

  • Steinley, D. (2004). Properties of the Hubert–Arabie Adjusted Rand Index. Psychological Methods, 9, 386–396.

    Article  PubMed  Google Scholar 

  • Tatsuoka, K. (1985). A probabilistic model for diagnosing misconception in the pattern classification approach. Journal of Educational Statistics, 12, 55–73.

    Google Scholar 

  • Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika, 79, 317–339.

    Article  PubMed  Google Scholar 

  • Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.

    Article  PubMed  Google Scholar 

  • Vermunt, J. K., & Magidson, J. (2000). Latent GOLD’s users’s guide. Boston: Statistical Innovations Inc.

    Google Scholar 

  • von Davier, M. (2005). A general diagnostic model applied to language testing data (Research report No. RR-05-16). Princeton, NJ: Educational Testing Service.

  • von Davier, M. (2011). Equivalency of the DINA model and a constrained general diagnostic model (Research report No. RR-11-37). Princeton, NJ: Educational Testing Service.

  • von Davier, M. (2006). Multidimensional latent trait modelling (MDLTM) [Software program]. Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287–301.

    Article  Google Scholar 

  • von Davier, M. (2014). The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. British Journal of Mathematical and Statistical Psychology, 67, 49–71.

    Article  Google Scholar 

  • von Davier, M., Cheng, C., & Cheng, C. A. (2014). Multistage testing using diagnostic models. In D. Yan, A. A. von Davier, & C. Lewis (Eds.), Computerized multistage testing (pp. 219–227). Boca Raton, FL: CRC Press Taylor & Francis.

    Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Willse, J., Henson, R., & Templin, J. (2007). Using sum scores or IRT in place of cognitive diagnosis models: Can existing or more familiar models do the job? Paper presented at the Annual Meeting of the National Council on Measurement in Education, Chicago, IL.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Yi Chiu.

Appendix: The Limited Legitimacy of \(\varvec{W}\) for the GDM

Appendix: The Limited Legitimacy of \(\varvec{W}\) for the GDM

Recall the IRF of the GDM and the expected response to item j (see Equation 2):

$$\begin{aligned} P(Y_j=1 \mid \varvec{\alpha }) = \frac{ \exp \big \{ \beta _j + \sum ^K_{k=1}\gamma _{jk} q_{jk} \alpha _k \big \} }{ 1 + \exp \big \{ \beta _j + \sum ^K_{k=1} \gamma _{jk} q_{jk} \alpha _k \big \} } = S_j(\varvec{\alpha }), \end{aligned}$$

where \(\varvec{\gamma }_j > \varvec{0}\). For the GDM, the sum-score statistic \(\varvec{W}\) cannot guarantee well-separated proficiency-class centers for distinct \(\varvec{\alpha }\), which invalidates Lemma 2. As an example, consider a test with 17 items involving \(K=3\) attributes. The Q-matrix and the parameter settings are

Frequency of item type

Item-attribute profile pattern

Parameter

    

\(\beta _j\)

\(\gamma _{j1}\)

\(\gamma _{j2}\)

\(\gamma _{j3}\)

2

1

0

0

\(-\)1.00

1.40

2

0

1

0

\(-\)1.00

1.50

2

0

0

1

\(-\)0.20

0.70

2

1

1

0

\(-\)0.20

0.20

0.10

2

1

0

1

\(-\)1.76

4.00

1.00

2

0

1

1

\(-\)1.64

3.00

0.50

5

1

1

1

0.22

0.10

0.10

5.00

For attribute profiles \(\varvec{\alpha }=(0,0,1)^{\prime }\) and \(\varvec{\alpha }^{*}=(1,1,0)^{\prime }\), the proficiency-class centers \(\varvec{T}(\varvec{\alpha }) = \varvec{T}(\varvec{\alpha }^{*}) = (7.1, 6.9, 7.3)^{\prime }\) are identical. Detailed calculations are provided only for \(\varvec{T}(\varvec{\alpha })\):

$$\begin{aligned} T_1(\varvec{\alpha })= & {} 2 \Big ( \frac{\exp \{\beta _1\}}{1+\exp \{\beta _1\}}\Big ) + 2 \Big (\frac{\exp \{\beta _4\}}{1+\exp \{\beta _4\}}\Big ) + 2 \Big (\frac{\exp \{\beta _5+\gamma _{53}\}}{1+\exp \{\beta _5+\gamma _{53}\}}\Big ) + 5 \Big (\frac{\exp \{\beta _7+\gamma _{73}\}}{1+\exp \{\beta _7+\gamma _{73}\}}\Big )\\= & {} 2 \Big (\frac{\exp \{-1\}}{1+\exp \{-1\}}\Big ) + 2 \Big (\frac{\exp \{-.20\}}{1+\exp \{-.20\}}\Big ) + 2 \Big (\frac{\exp \{-1.76+1\}}{1+\exp \{-1.76+1\}}\Big )\\&+\, 5 \Big (\frac{\exp \{.22+5\}}{1+\exp \{.22+5\}}\Big )\\= & {} 7.10, \\ T_2(\varvec{\alpha })= & {} 2\Big (\frac{\exp \{\beta _2\}}{1+\exp \{\beta _2\}}\Big ) + 2\Big (\frac{\exp \{\beta _4\}}{1+\exp \{\beta _4\}}\Big ) + 2\Big (\frac{\exp \{\beta _6+\gamma _{63}\}}{1+\exp \{\beta _6+\gamma _{63}\}}\Big ) + 5\Big (\frac{\exp \{\beta _7+\gamma _{73}\}}{1+\exp \{\beta _7+\gamma _{73}\}}\Big )\\= & {} 2\Big (\frac{\exp \{-1\}}{1+\exp \{-1\}}\Big ) + 2\Big (\frac{\exp \{-.20\}}{1+\exp \{-.20\}}\Big ) + 2\Big (\frac{\exp \{-1.64+.50\}}{1+\exp \{-1.64+.50\}}\Big ) \\&+\, 5\Big (\frac{\exp \{.22+5\}}{1+\exp \{.22+5\}}\Big )\\= & {} 6.90, \\ T_3(\varvec{\alpha })= & {} 2\Big (\frac{\exp \{\beta _3+\gamma _{33}\}}{1+\exp \{\beta _3 +\gamma _{33}\}}\Big ) + 2\Big (\frac{\exp \{\beta _5+\gamma _{53}\}}{1+\exp \{\beta _5+\gamma _{53}\}}\Big ) + 2\Big (\frac{\exp \{\beta _6+\gamma _{63}\}}{1+\exp \{\beta _6+\gamma _{63}\}}\Big )\\&+\, 5\Big (\frac{\exp \{\beta _7+\gamma _{73}\}}{1+\exp \{\beta _7+\gamma _{73}\}}\Big )\\= & {} 2\Big (\frac{\exp \{-.20+.70\}}{1+\exp \{-.20+.70\}}\Big ) + 2\Big (\frac{\exp \{-1.76+1\}}{1+\exp \{-1.76+1\}}\Big ) + 2\Big (\frac{\exp \{-1.64+.50\}}{1+\exp \{-1.64+.50\}}\Big ) \\&+ \, 5\Big (\frac{\exp \{.22+5\}}{1+\exp \{.22+5\}}\Big )\\= & {} 7.30. \end{aligned}$$

Given two attribute profiles, \(\varvec{\alpha }\ne \varvec{\alpha }^{*}\), \(\varvec{\alpha }\) is said to be nested within \(\varvec{\alpha }^{*}\) if there exist some k and \(k^{\prime }\) (\(k\ne k^{\prime }\); \(k, k^{\prime } \in \{1,2,\ldots ,K\}\)) such that \(\alpha _k=0\), \(\alpha ^{*}_k=1\), and \(\alpha _{k^{\prime }} \le \alpha ^{*}_{k^{\prime }}\). Assume that the Q-matrix contains at least one of each of the possible \(2^K-1\) item-attribute profiles.

1.1 Condition: \(\varvec{\alpha }\ne \varvec{\alpha }^{*}\) Is Nested Within \(\varvec{\alpha }^{*}\)

From the equation for the expected response \(S_j(\varvec{\alpha })\) for the GDM, it is known that

$$\begin{aligned} T_k(\varvec{\alpha })= & {} \sum _{j=1}^J\frac{\exp \big \{ \beta _j+\sum _{l=1,l \ne k}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}{1 + \exp \big \{\beta _j+\sum _{l=1,l \ne k}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}\,\, \text{ I }(q_{jk}=1), \end{aligned}$$
(14)
$$\begin{aligned} T_k(\varvec{\alpha }^{*})= & {} \sum _{j=1}^J\frac{\exp \big \{ \beta _j+\sum _{l=1}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}{1 + \exp \big \{\beta _j+\sum _{l=1}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}\,\, \text{ I }(q_{jk}=1). \end{aligned}$$
(15)

Based on the assumptions that the slope \(\gamma _{_{jk}}>0\), \(\alpha ^{*}_k=1\) and that \(\alpha _{k'} \le \alpha ^{*}_{k'}\) for all \(k' \ne k\), the term \(\sum _{l=1}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\) in Eq. 15 can be decomposed as

$$\begin{aligned} \sum _{l=1}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l} = \sum _{l=1,l \ne k}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l} + \gamma _{_{jk}} \ge \sum _{l=1,l \ne k}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}+\gamma _{_{jk}} > \sum _{l=1,l \ne k}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}. \end{aligned}$$

Because the logistic function, \(\exp \{\beta \}/(1 + \exp \{\beta \})\), increases monotonically, \(T_k(\varvec{\alpha }) < T_k(\varvec{\alpha }^{*})\), which implies that \(\varvec{T}(\varvec{\alpha }) \ne \varvec{T}(\varvec{\alpha }^{*})\). Hence, as long as the attribute profiles of two proficiency classes are nested, their centers are guaranteed to be separated.

1.2 Condition: \(\varvec{\alpha }\ne \varvec{\alpha }^{*}\) Is Not Nested Within \(\varvec{\alpha }^{*}\)

If \(\varvec{\alpha }\) is not nested within \(\varvec{\alpha }^{*}\), then there must be some k and \(k^{\prime }\) (\(k\ne k^{\prime }\); \(k, k^{\prime } \in \{1,2,\ldots ,K\}\)) such that \(\alpha _k=1\) and \(\alpha _{k^{\prime }}=0\); \(\alpha ^{*}_k=0\) and \(\alpha ^{*}_{k^{\prime }}=1\). Then the \(k^{th}\) components of \(\varvec{T}(\varvec{\alpha })\) and \(\varvec{T}(\varvec{\alpha }^{*})\) are

$$\begin{aligned} \begin{aligned} T_k(\varvec{\alpha })&= \sum _{j=1}^J\frac{\exp \big \{ \beta _j+\gamma _{_{jk}}+\sum _{l=1,l \ne k}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}{1+\exp \big \{ \beta _j+\gamma _{_{jk}}+\sum _{l=1,l \ne k}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}\,\, \text{ I }(q_{jk}=1)\\&= \sum _{j=1}^J\frac{\exp \big \{ \beta _j+\gamma _{_{jk}}+\sum _{l=1, l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}{1+\exp \big \{ \beta _j+\gamma _{_{jk}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}\,\, \text{ I }(q_{jk}=1,q_{jk'}=0)\\&\quad +\, \sum _{j=1}^J\frac{\exp \big \{ \beta _j+\gamma _{_{jk}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}{1+\exp \big \{ \beta _j+\gamma _{_{jk}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}\,\, \text{ I }(q_{jk}=1,q_{jk'}=1), \\ T_k(\varvec{\alpha }^{*})&= \sum _{j=1}^J\frac{\exp \big \{ \beta _j + \sum _{l=1,l \ne k}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}{1+\exp \big \{ \beta _j + \sum _{l=1,l \ne k}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}\,\, \text{ I }(q_{jk}=1)\\&= \sum _{j=1}^J\frac{\exp \big \{ \beta _j+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}{1+\exp \big \{ \beta _j+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}\,\, \text{ I }(q_{jk}=1,q_{jk'}=0) \\&\quad +\, \sum _{j=1}^J\frac{\exp \big \{ \beta _j+\gamma _{_{jk'}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}{1+\exp \big \{ \beta _j+\gamma _{_{jk'}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}\,\, \text{ I }(q_{jk}=1,q_{jk'}=1). \end{aligned} \end{aligned}$$
(16)

The components \(k^{\prime }\) of \(\varvec{T}(\varvec{\alpha })\) and \(\varvec{T}(\varvec{\alpha }^{*})\) are

$$\begin{aligned} \begin{aligned} T_{k'}(\varvec{\alpha })&= \sum _{j=1}^J\frac{\exp \big \{ \beta _j + \sum _{l=1,l \ne k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}{1+\exp \big \{ \beta _j + \sum _{l=1,l \ne k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}\,\, \text{ I }(q_{jk^{\prime }}=1) \\&= \sum _{j=1}^J \frac{\exp \big \{ \beta _j+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}{1+\exp \big \{ \beta _j+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}\,\, \text{ I }(q_{jk'}=1,q_{jk}=0) \\&\quad +\,\frac{\exp \big \{ \beta _j+\gamma _{_{jk}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}{1+\exp \big \{ \beta _j+\gamma _{_{jk}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}\,\, \text{ I }(q_{jk'}=1,q_{jk}=1), \\ T_{k'}(\varvec{\alpha }^{*})&= \sum _{j=1}^J\frac{\exp \big \{ \beta _j + \gamma _{_{jk^{\prime }}} + \sum _{l=1,l \ne k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}{1+\exp \big \{ \beta _j + \gamma _{_{jk^{\prime }}} + \sum _{l=1,l \ne k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}\,\, \text{ I }(q_{jk^{\prime }}=1)\\&= \sum _{j=1}^J\frac{\exp \big \{ \beta _j+\gamma _{_{jk'}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}{1+\exp \big \{ \beta _j+\gamma _{_{jk'}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}\,\, \text{ I }(q_{jk'}=1,q_{jk}=0) \\&\quad +\,\sum _{j=1}^J\frac{\exp \big \{ \beta _j+\gamma _{_{jk'}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}{1+\exp \big \{ \beta _j+\gamma _{_{jk'}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}\,\, \text{ I }(q_{jk'}=1,q_{jk}=1). \end{aligned} \end{aligned}$$
(17)

Note that the right-hand side summation terms in the exponential expressions of the pairs of equations in 16 and 17 involve triple products depending on the remaining entries, \(\alpha _l\) and \(\alpha ^{*}_l\), with \(l \ne k, k^{\prime }\). However, there is no way to predict which specific elements, \(\alpha _l\), \(\alpha ^{*}_l\), equal 0 or 1. Hence, it is not possible (as it was for the case of the nested attribute profile patterns) to determine whether any reliable equality relation exists between the right-hand side terms of the pair of equations in either 16 or 17. Consequently, no conclusions about the equality or inequality of the components \(T_k(\varvec{\alpha })\) and \(T_k(\varvec{\alpha }^{*})\), or the components \(T_{k^{\prime }}(\varvec{\alpha })\) and \(T_{k^{\prime }}(\varvec{\alpha }^{*})\), can be drawn, and no conclusive statement as to whether \(\varvec{T}(\varvec{\alpha })\) equals \(\varvec{T}(\varvec{\alpha }^{*})\) is possible when attribute profiles are not nested, with the exception of two special cases.

1.3 Special Case: \(||\varvec{\alpha }||^2=||\varvec{\alpha }^{*}||^2= K^{*} = 1,2, \ldots , K-1\); \(\varvec{\alpha }\ne \varvec{\alpha }^{*}\) Is Not Nested Within \(\varvec{\alpha }^{*}\)

If two attribute profiles, \(\varvec{\alpha }\) and \(\varvec{\alpha }^{*}\), have the same length, \(||\varvec{\alpha }||^2 = ||\varvec{\alpha }^{*}||^2 = K^{*} = 1,2, \ldots , K-1\), but differ in only two elements, k and \(k^{\prime }\), (i.e., all other elements in \(\varvec{\alpha }\) and \(\varvec{\alpha }^{*}\) must be identical), then the following equality holds:

$$\begin{aligned} \sum _{l=1,l \ne k, k'}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l} = \sum _{l=1,l \ne k, k'}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}. \end{aligned}$$
(18)

This equality implies that, for the pair of equations representing the \(k^{th}\) components of \(\varvec{T}(\varvec{\alpha })\) and \(\varvec{T}(\varvec{\alpha }^{*})\) in 16,

$$\begin{aligned} \frac{\exp \big \{ \beta _j+\gamma _{_{jk}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}{1+\exp \big \{ \beta _j+\gamma _{_{jk}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}} > \frac{\exp \big \{ \beta _j+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}{1+\exp \big \{ \beta _j+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}, \end{aligned}$$
(19)

and that, for the pair of equations representing components \(k^{\prime }\) of \(\varvec{T}(\varvec{\alpha })\) and \(\varvec{T}(\varvec{\alpha }^{*})\) in 17,

$$\begin{aligned} \frac{\exp \big \{ \beta _j+\gamma _{_{jk'}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}{1+\exp \big \{ \beta _j+\gamma _{_{jk'}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}} > \frac{\exp \big \{ \beta _j+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}{1+\exp \big \{ \beta _j+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}. \end{aligned}$$
(20)

Recall that whether \(T_k(\varvec{\alpha })\) equals \(T_k(\varvec{\alpha }^{*})\) or whether \(T_{k^{\prime }}(\varvec{\alpha })\) equals \(T_{k^{\prime }}(\varvec{\alpha }^{*})\) (and thus, whether \(\varvec{T}(\varvec{\alpha })\) equals \(\varvec{T}(\varvec{\alpha }^{*})\)) cannot be determined. But if it is assumed that \(T_k(\varvec{\alpha }) \ne T_k(\varvec{\alpha }^{*})\), then no further examination of \(T_{k^{\prime }}(\varvec{\alpha })\) and \(T_{k^{\prime }}(\varvec{\alpha }^{*})\) is necessary because then \(\varvec{T}(\varvec{\alpha })\ne \varvec{T}(\varvec{\alpha }^{*})\) by assumption. If it is also assumed that \(T_k(\varvec{\alpha })= T_k(\varvec{\alpha }^{*})\), then from Eq. 19, it follows that

$$\begin{aligned} \begin{aligned}&\sum _{j=1}^J\frac{\exp \big \{\beta _j+\gamma _{_{jk}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}{1+\exp \big \{\beta _j+\gamma _{_{jk}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha _{_l}\big \}}\quad \text{ I }(q_{jk}=1,q_{jk'}=1) \\&< \\&\sum _{j=1}^J \frac{\exp \big \{\beta _j+\gamma _{_{jk'}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}{1+\exp \big \{\beta _j+\gamma _{_{jk'}}+\sum _{l=1,l \ne k, k^{\prime }}^K \gamma _{_{jl}}q_{_{jl}}\alpha ^{*}_{_l}\big \}}\quad \text{ I }(q_{jk}=1,q_{jk'}=1) \end{aligned} \end{aligned}$$
(21)

must be true; otherwise, this assumption would be violated. Inspection of \(T_{k^{\prime }}(\varvec{\alpha })\) and \(T_{k^{\prime }}(\varvec{\alpha }^{*})\) in Equations 20 and 21 suggests that \(T_{k'}(\varvec{\alpha }) < T_{k'}(\varvec{\alpha }^{*})\), which implies \(\varvec{T}(\varvec{\alpha })\ne \varvec{T}(\varvec{\alpha }^{*})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, CY., Köhn, HF. Consistency of Cluster Analysis for Cognitive Diagnosis: The Reduced Reparameterized Unified Model and the General Diagnostic Model. Psychometrika 81, 585–610 (2016). https://doi.org/10.1007/s11336-016-9499-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-016-9499-8

Keywords

Navigation