Skip to main content
Log in

Identifiability and Equivalence of GLLIRM Models

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The generalized logit–linear item response model (GLLIRM) is a linearly constrained nominal categories model (NCM) that computes the scale and intercept parameters for categories as a weighted sum of basic parameters. This paper addresses the problems of the identifiability of the basic parameters and the equivalence between different GLLIRM models. It is shown that the identifiability of the basic parameters depends on the size and rank of the coefficient matrix of the linear functions. Moreover, two models are observationally equivalent if the product of the respective coefficient matrices has full column rank. Finally, the paper also explores the relations between the parameters of nested models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, E. B. (1980). Discrete statistical models with social science applications. Amsterdam: North-Holland.

    Google Scholar 

  • Bartels, R. (1985). Identification in econometrics. The American Statistician, 39, 102–104.

    Article  Google Scholar 

  • Bechger, T. M., & Maris, G. (2004). Structural equation modelling of multiple facet data. Extending models for multitrait–multimethod data. Psicológica, 25, 253–274.

    Google Scholar 

  • Bechger, T. M., Verhelst, N. D., & Verstralen, H. F. M. (2001). Identifiability of nonlinear logistic test models. Psychometrika, 66, 357–371.

    Article  Google Scholar 

  • Bechger, T. M., Verstralen, H. F. M., & Verhelst, N. D. (2002). Equivalent linear logistic test models. Psychometrika, 67, 123–136.

    Article  Google Scholar 

  • Bejar, I. I. (1993). A generative approach to educational and psychological measurement. In N. Frederiksen, R. J. Mislevy & I. I. Bejar (Eds.), Test theory for a new generation of tests (pp. 199–217). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Bejar, I. I., Lawless, R. R., Morley, M. E., Wagner, M. E., Bennett, R. E., & Revuelta, J. (2002). A feasibility study of on-the-fly adaptive testing. Journal of Technology, Learning and Assessment, 2, 4–29.

    Google Scholar 

  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental tests scores. Reading: Addison-Wesley.

    Google Scholar 

  • Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 29–51.

    Article  Google Scholar 

  • Bock, R. D. (1997). The nominal categories model. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory. New York: Springer.

    Google Scholar 

  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443–459.

    Article  Google Scholar 

  • Bock, R. D., & Moustaki, I. (2007). Item response theory in a general framework. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics. Psychometrics. Amsterdam: Elsevier.

    Google Scholar 

  • Embretson, S. (1999). Generating items during testing. Psychometric issues and models. Psychometrika, 64, 407–433.

    Article  Google Scholar 

  • Fischer, G. H. (1981). On the existence and uniqueness of maximum-likelihood estimates in the Rasch model. Psychometrika, 46, 59–77.

    Article  Google Scholar 

  • Fischer, G. H. (1983). Logistic latent trait model with linear constraints. Psychometrika, 48, 3–26.

    Article  Google Scholar 

  • Fischer, G. H. (1995). The linear logistic test model. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models: foundations, recent developments and applications. New York: Springer.

    Google Scholar 

  • Fischer, G. H. (1997). Unidimensional linear logistic Rasch models. In W. v. der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory. New York: Springer.

    Google Scholar 

  • Fischer, G. H. (2004). Remarks on “Equivalent linear logistic test models” by Bechger, Verstralen, and Verhelst (2002). Psychometrika, 69, 305–315.

    Article  Google Scholar 

  • Fischer, G. H., & Molenaar, I. W. (1995). Rasch models. Foundations, recent developments and applications. New York: Springer.

    Google Scholar 

  • Fischer, G. H., & Ponocny, I. (1994). An extension of the partial credit model with an application to the measurement of change. Psychometrika, 56, 177–192.

    Article  Google Scholar 

  • Hsiao, C. (1983). Identification. In Z. Griliches & M. D. Intriligator (Eds.), Handbook of econometrics, Vol. I. Amsterdam: North-Holland.

    Google Scholar 

  • Irvine, S. H., Kyllonen, P. C. (2002). Item generation for test development. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lehmann, E. L. (1983). Theory of point estimation. New York: Wiley.

    Google Scholar 

  • Manski, C. F. (1988). Identification of binary response models. Journal of the American Statistical Association, 83, 729–738.

    Article  Google Scholar 

  • Maris, G., & Bechger, T. M. (2004). Equivalent MIRID models. Psychometrika, 69, 627–639.

    Article  Google Scholar 

  • Pringle, R. M., & Rayner, A. A. (1971). Generalized inverse matrix with application to statistics. London: Charles Griffin & Co.

    Google Scholar 

  • Rao, C. R. (1973). Linear statistical inference and its applications. New York: Wiley.

    Book  Google Scholar 

  • Rao, C. R., & Mitra, S. K. (1971). Generalized inverse of matrices and its applications. New York: Wiley.

    Google Scholar 

  • Rao, C. R., & Toutenburg, H. (1995). Linear models. Least squares and alternatives. New York: Springer.

    Google Scholar 

  • Revuelta, J. (2008). The generalized logit-linear item response model for binary-designed items. Psychometrika, 73(3), 385–405.

    Article  Google Scholar 

  • Richmond, J. (1974). Identifiability in linear models. Econometrica, 42, 731–736.

    Article  Google Scholar 

  • Rothenberg, T. (1971). Identification in parametric models. Econometrica, 39, 577–591.

    Article  Google Scholar 

  • Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567–577.

    Article  Google Scholar 

  • Tsai, R. C. (2000). Remarks on the identifiability of Thurstonian ranking models. Case V, III or neither?. Psychometrika, 65, 233–240.

    Article  Google Scholar 

  • Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. The Annals of Mathematical Statistics, 20, 595–601.

    Article  Google Scholar 

  • Wansbeek, T., & Meijer, E. (2000). Measurement error and latent variables in econometrics. Amsterdam: North-Holland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Revuelta.

Additional information

I would like to express my gratitude to the editor and three anonymous reviewers for their helpful suggestions on earlier versions of the paper. This work was supported by the Comunidad de Madrid (Spain) grant: CCG07-UAM/ESP-1615.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revuelta, J. Identifiability and Equivalence of GLLIRM Models. Psychometrika 74, 257–272 (2009). https://doi.org/10.1007/s11336-008-9084-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-008-9084-x

Keywords

Navigation