Skip to main content
Log in

Modulatory effect of exercise on reactive astrocytes in the somatosensory cortex of epileptic rats

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

Astrocytes as the most abundant brain cells play a variety of critical roles in neuroplasticity and normal brain function. Many epileptic patients show changes in astroglia morphology and function named reactive astrogliosis. The beneficial role of exercise has been reported in several studies. This study aimed to assess the effect of regular moderate exercise on astrocytes alteration followed by chronic seizures in the somatosensory cortex.

Methods

Male Wistar rats were divided into five groups: sham, pentylenetetrazole (PTZ), exercise (EX), EX before PTZ and EX + PTZ. Animals in the sham group received saline every other day for 4 weeks intraperitoneally (i.p.). Chronic seizures were induced by an i.p. injection of PTZ (35 mg/kg) every other day for 4 weeks. The protocol of exercise was running on a treadmill for 30 min/day 5 days a week at a mild intensity. The mean percentage of GFAP, C3 and S100A10 reacted astrocytes in the somatosensory cortex was assessed using immunohistochemistry.

Findings.

Our findings indicated that GFAP, as well as S100A10 expression, increased in the EX and the EX before PTZ group. The expression of the C3 receptor as a marker of neurotoxic astrocytes decreased in the three groups of exercise. In addition, the C3/S100A10 ratio in the somatosensory cortex decreased in the three groups of exercise.

Conclusion

Exercise would remodel astrocytes in the somatosensory cortex in favor of producing more neuroprotective astrocytes following the chronic seizure. Further, the improvement of neuroprotective astrocytes may be involved in the antiepileptogenesis effect of preconditioning exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  2. Liddelow S, Barres B (2015) SnapShot: astrocytes in health and disease. Cell 162 (5):1170–1170. e1171

  3. Shigetomi E, Saito K, Sano F, Koizumi S (2019) Aberrant calcium signals in reactive astrocytes: a key process in neurological disorders. Int J Mol Sci 20(4):996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou B, Zuo YX, Jiang RT (2019) Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci Ther 25(6):665–673

    Article  PubMed  PubMed Central  Google Scholar 

  5. Losi G, Cammarota M, Carmignoto G (2012) The role of astroglia in the epileptic brain. Front Pharmacol 3:132

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miller SJ (2018) Astrocyte heterogeneity in the adult central nervous system. Front Cell Neurosci 12:401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38

    Article  CAS  PubMed  Google Scholar 

  8. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung W-S, Peterson TC (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li T, Liu T, Chen X, Li L, Feng M, Zhang Y, Wan L, Zhang C, Yao W (2020) Microglia induce the transformation of A1/A2 reactive astrocytes via the CXCR7/PI3K/Akt pathway in chronic post-surgical pain. J Neuroinflammation 17(1):1–15

    Article  Google Scholar 

  10. Li T, Chen X, Zhang C, Zhang Y, Yao W (2019) An update on reactive astrocytes in chronic pain. J Neuroinflammation 16(1):1–13

    Article  Google Scholar 

  11. Wasterlain CG, Chen JW (2008) Mechanistic and pharmacologic aspects of status epilepticus and its treatment with new antiepileptic drugs. Epilepsia 49:63–73

    Article  CAS  PubMed  Google Scholar 

  12. Acharya MM, Hattiangady B, Shetty AK (2008) Progress in neuroprotective strategies for preventing epilepsy. Prog Neurobiol 84(4):363–404

    Article  CAS  PubMed  Google Scholar 

  13. Barzroodi Pour M, Bayat M, Navazesh A, Soleimani M, Karimzadeh FJNR (2021) Exercise Improved the Anti-Epileptic Effect of Carbamazepine through GABA Enhancement in Epileptic Rats 46(8):2112–2130

    CAS  Google Scholar 

  14. Howard GM, Radloff M, Sevier TLJCsmr (2004) Epilepsy and sports participation. 3 (1):15–19

  15. Setkowicz Z, Mazur A (2006) Physical training decreases susceptibility to subsequent pilocarpine-induced seizures in the rat. Epilepsy Res 71(2–3):142–148

    Article  PubMed  Google Scholar 

  16. Nakken K, Bjørholt P, Johannessen S, LoSyning T, Lind E (1990) Effect of physical training on aerobic capacity, seizure occurrence, and serum level of antiepileptic drugs in adults with epilepsy. Epilepsia 31(1):88–94

    Article  CAS  PubMed  Google Scholar 

  17. Arida RM, Scorza FA, Terra VC, Scorza CA, de Almeida A-C, Cavalheiro EA (2009) Physical exercise in epilepsy: what kind of stressor is it? Epilepsy Behav 16(3):381–387

    Article  PubMed  Google Scholar 

  18. Zavvari F, Alivan F, Abdi M, Jahanbazi Jahan-Abad A, Karimzadeh FJSSfH (2022) Maternal exercise during pregnancy increases neuregulin-1 and ErbB4 expression in the newborn offspring of Wistar rats.1–7

  19. Albrecht H (1986) Endorphins, sport and epilepsy: getting fit or having one? N Z Med J 99(814):915

    CAS  PubMed  Google Scholar 

  20. Barzroodi Pour M, Bayat M, Golab F, Eftekharzadeh M, Katebi M, Soleimani M, Karimzadeh F (2019) The effect of exercise on GABA signaling pathway in the model of chemically induced seizures. Life sciences 232:116667. doi:https://doi.org/10.1016/j.lfs.2019.116667

  21. Holmes PV, Reiss JI, Murray PS, Dishman RK, Spradley JM (2015) Chronic exercise dampens hippocampal glutamate overflow induced by kainic acid in rats. Behav Brain Res 284:19–23

    Article  CAS  PubMed  Google Scholar 

  22. Kim H-j, Kim I-K, Song W, Lee J, Park S (2013) The synergic effect of regular exercise and resveratrol on kainate-induced oxidative stress and seizure activity in mice. Neurochem Res 38(1):117–122

    Article  CAS  PubMed  Google Scholar 

  23. Lundquist AJ, Parizher J, Petzinger GM, Jakowec MW (2019) Exercise induces region-specific remodeling of astrocyte morphology and reactive astrocyte gene expression patterns in male mice. J Neurosci Res 97(9):1081–1094

    Article  CAS  PubMed  Google Scholar 

  24. Li F, Geng X, Yun HJ, Haddad Y, Chen Y, Ding Y (2021) Neuroplastic Effect of Exercise Through Astrocytes Activation and Cellular Crosstalk. Aging Dis 12(7):1644–1657

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tatsumi K, Okuda H, Morita-Takemura S, Tanaka T, Isonishi A, Shinjo T, Terada Y, Wanaka A (2016) Voluntary exercise induces astrocytic structural plasticity in the globus pallidus. Front Cell Neurosci 10(165):1–12

    Google Scholar 

  26. Barzroodi Pour M, Bayat M, Navazesh A, Soleimani M, Karimzadeh F (2021) Exercise Improved the Anti-Epileptic Effect of Carbamazepine through GABA Enhancement in Epileptic Rats. Neurochem Res 46(8):2112–2130

    Article  CAS  PubMed  Google Scholar 

  27. Bayat M, Golab F, Eftekharzadeh M, Katebi M, Soleimani M, Karimzadeh F (2019) The effect of exercise on GABA signaling pathway in the model of chemically induced seizures. Life Sci 232(116667):1–9

    Google Scholar 

  28. Aronica E, Boer K, Van Vliet E, Redeker S, Baayen J, Spliet W, Van Rijen P, Troost D, Da Silva FL, Wadman W (2007) Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis 26(3):497–511

    Article  CAS  PubMed  Google Scholar 

  29. Coulter DA, Steinhäuser C (2015) Role of astrocytes in epilepsy. Cold Spring Harb Perspect Med 5(3):a022434

    Article  PubMed  PubMed Central  Google Scholar 

  30. Steinhäuser C, Grunnet M, Carmignoto G (2016) Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience 323:157–169

    Article  PubMed  Google Scholar 

  31. Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M, Ellisman MH, Pekny M (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci 103(46):17513–17518

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Middeldorp J, Hol E (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Ding Y-H, Rafols JA, Lai Q, McAllister JP II, Ding Y (2005) Increased astrocyte proliferation in rats after running exercise. Neurosci Lett 386(3):160–164

    Article  CAS  PubMed  Google Scholar 

  34. Saur L, de Senna PN, Paim MF, Nascimento Pd, Ilha J, Bagatini PB, Achaval M, Xavier LL (2014) Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. Brain Struct Funct 219(1):293–302

    Article  CAS  PubMed  Google Scholar 

  35. Alese OO, Mabandla MV (2019) Upregulation of hippocampal synaptophysin, GFAP and mGluR3 in a pilocarpine rat model of epilepsy with history of prolonged febrile seizure. J Chem Neuroanat 100:101659

    Article  CAS  PubMed  Google Scholar 

  36. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  37. Li K, Li J, Zheng J, Qin S (2019) Reactive astrocytes in neurodegenerative diseases. Aging Dis 10(3):664–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. King A, Szekely B, Calapkulu E, Ali H, Rios F, Jones S, Troakes C (2020) The increased densities, but different distributions, of both C3 and S100A10 immunopositive astrocyte-like cells in Alzheimer’s disease brains suggest possible roles for both A1 and A2 astrocytes in the disease pathogenesis. Brain Sci 10(8):503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hayatdavoudi P, Hosseini M, Hajali V, Hosseini A, Rajabian A (2022) The role of astrocytes in epileptic disorders. Physiol Rep 10(6):1–13

    Article  Google Scholar 

  40. Aronica E, Ravizza T, Zurolo E, Vezzani A (2012) Astrocyte immune responses in epilepsy. Glia 60(8):1258–1268

    Article  PubMed  Google Scholar 

  41. Maugeri G, D’Agata V, Magrì B, Roggio F, Castorina A, Ravalli S, Di Rosa M, Musumeci G (2021) Neuroprotective effects of physical activity via the adaptation of astrocytes. Cells 10(6):1–13

    Article  Google Scholar 

  42. Fahimi A, Baktir MA, Moghadam S, Mojabi FS, Sumanth K, McNerney M, Ponnusamy R, Salehi A (2017) Physical exercise induces structural alterations in the hippocampal astrocytes: exploring the role of BDNF-TrkB signaling. Brain Struct Funct 222(4):1797–1808

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors' contributions are as follows: Conception and design of research: Fariba Karimzadeh, Mansoureh Soleimani. Perform experiments: Saad Bavi, Azam Navazesh, Fahime Zavvari. Analysis and interpretation of data: Homa Rasoolijazi. Prepare the manuscript: Fahime Zavvari. Edit and revise of the manuscript: Fariba Karimzadeh, Mansoureh Soleimani. All authors reads and approved the final version of the manuscript.

Corresponding authors

Correspondence to Mansoureh Soleimani or Fariba karimzadeh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in this research. There is not any relationship with industry.

Ethical approval

All the experiments were carried out according to the protocol approved by the animal ethics of the Iran University of Medical Sciences, Tehran, Iran (IR.IUMS.RFC.1398.1287).

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavi, S., Navazesh, A., Rasoolijazi, H. et al. Modulatory effect of exercise on reactive astrocytes in the somatosensory cortex of epileptic rats. Sport Sci Health 20, 65–72 (2024). https://doi.org/10.1007/s11332-023-01065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-023-01065-9

Keywords

Navigation