Skip to main content
Log in

Effect of mate tea consumption on rapid force production after eccentric exercise: a randomized, controlled, crossover study

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background and purpose

Unusual eccentric exercise (EE) may affect muscle ability to produce rapid force. Previous study suggested that short-term mate tea (MT) consumption may enhance muscle strength recovery from EE, but MT benefits on the rate of torque development (RTD) are unknown. This study investigated the effect of MT on RTD and muscle damage and antioxidant defence biomarkers following EE.

Methods

In a randomised, crossover design, 12 men drank either MT or water (control; CON) for 11 days. On the 8th day, 3 sets of 20 maximal isokinetic eccentric for elbow flexors with one arm were performed. RTD of the elbow flexor muscles at 0–50, 0–100, 50–100, 0–200, and 100–200 ms were assessed before and at 0, 24, 48, and 72 h after exercise. Blood samples were obtained before and at 24, 48, and 72 h after exercise and analysed for creatine kinase (CK), aldolase (ALD), total phenols, and reduced:oxidized glutathione (GSH:GSSG) ratio.

Results

RTD0–50 deficit after EE was independent of treatment. Compared with CON, MT improved RTD0–100 at 48 h (21%, P = 0.015) and 72 h (24%, P = 0.022); RTD0–200 at 48 h (18%, P = 0.034) and 72 h (21%, P = 0.029); RTD50–100 at 48 h (25%, P = 0.001) and 72 h (19%, P = 0.011); and RTD100–200 at 72 h (28%, P = 0.038). CK peaked (P = 0.012) in both trials at 72 h, and ALD was higher in MT than in CON before and at 24 h (P = 0.005 and P < 0.001, respectively). Compared with CON, MT showed higher values (P < 0.05) before and until 48 h after EE, for total phenols, and over 72 h after EE, for GSH:GSSG ratio.

Conclusion

MT intake favoured the recovery of RTD >50 ms by 2–3 days after EE. Furthermore, MT ameliorated circulating levels of muscle damage and antioxidant biomarkers irrespectively of exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97

    PubMed  Google Scholar 

  2. Beaton LJ, Allan DA, Tarnopolsky MA, Tiidus PM, Phillips SM (2002) Contraction-induced muscle damage is unaffected by vitamin E supplementation. Med Sci Sports Exerc 34(5):798–805. https://doi.org/10.1097/00005768-200205000-00012

    Article  CAS  PubMed  Google Scholar 

  3. Toumi H, F’guyer S (2006) Best TM (2006) The role of neutrophils in injury and repair following muscle stretch. J Anat 208(4):459–470. https://doi.org/10.1111/j.1469-7580.2006.00543.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coratella G, Bertinato L (2015) Isoload vs isokinetic eccentric exercise: a direct comparison of exercise-induced muscle damage and repeated bout effect. Sport Sci Health 11:87–96. https://doi.org/10.1007/s11332-014-0213-x

    Article  Google Scholar 

  5. Coratella G, Chemello A, Schena F (2016) Muscle damage and repeated bout effect induced by enhanced eccentric squats. J Sports Med Phys Fitness 56(12):1540–1546

    PubMed  Google Scholar 

  6. Clarkson PM, Litchfield P, Graves J, Kirwan J, Byrnes WC (1985) Serum creatine kinase activity following forearm flexion isometric exercise. Eur J Appl Physiol Occup Physiol 53(4):368–371. https://doi.org/10.1007/BF00422856

    Article  CAS  PubMed  Google Scholar 

  7. Nosaka K, Clarkson PM, McGuiggin ME, Byrne JM (1991) Time course of muscle adaptation after high force eccentric exercise. Eur J Appl Physiol Occup Physiol 63(1):70–76. https://doi.org/10.1007/BF00760804

    Article  CAS  PubMed  Google Scholar 

  8. Colliander EB, Tesch PA (1991) Responses to eccentric and concentric resistance training in females and males. Acta Physiol Scand 141(2):149–156. https://doi.org/10.1111/j.1748-1716.1991.tb09063.x

    Article  CAS  PubMed  Google Scholar 

  9. Frizziero A, Trainito S, Oliva F, Nicoli Aldini N, Masiero S, Maffulli N (2014) The role of eccentric exercise in sport injuries rehabilitation. Br Med Bull 110(1):47–75. https://doi.org/10.1093/bmb/ldu006

    Article  PubMed  Google Scholar 

  10. Stasinaki AN, Zaras N, Methenitis S, Bogdanis G, Terzis G (2019) Rate of force development and muscle architecture after fast and slow velocity eccentric training. Sports (Basel) 7(2):41. https://doi.org/10.3390/sports7020041Published 2019 Feb 14

    Article  Google Scholar 

  11. Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27(1):43–59. https://doi.org/10.2165/00007256-199927010-00004

    Article  CAS  PubMed  Google Scholar 

  12. Damas F, Nosaka K, Libardi CA, Chen TC, Ugrinowitsch C (2016) Susceptibility to exercise-induced muscle damage: a cluster analysis with a large sample. Int J Sports Med 37(8):633–640. https://doi.org/10.1055/s-0042-100281

    Article  CAS  PubMed  Google Scholar 

  13. Jenkins ND, Housh TJ, Traylor DA et al (2014) The rate of torque development: a unique, non-invasive indicator of eccentric-induced muscle damage? Int J Sports Med 35(14):1190–1195. https://doi.org/10.1055/s-0034-1375696

    Article  CAS  PubMed  Google Scholar 

  14. Peñailillo L, Blazevich A, Numazawa H, Nosaka K (2015) Rate of force development as a measure of muscle damage. Scand J Med Sci Sports 25(3):417–427. https://doi.org/10.1111/sms.12241

    Article  PubMed  Google Scholar 

  15. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93(4):1318–1326. https://doi.org/10.1152/japplphysiol.00283.2002

    Article  PubMed  Google Scholar 

  16. Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J (2016) Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 116(6):1091–1116. https://doi.org/10.1007/s00421-016-3346-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Andersen LL, Aagaard P (2006) Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol 96(1):46–52. https://doi.org/10.1007/s00421-005-0070-z

    Article  PubMed  Google Scholar 

  18. Josephson RK, Edman KA (1998) Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation. J Physiol 507(Pt2):511–525. https://doi.org/10.1111/j.1469-7793.1998.511bt.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Folland JP, Buckthorpe M, Hannah R (2014) Human capacity for explosive force production: neural and contractile determinants. Scand J Med Sci Sport 24(6):894–906

    Article  CAS  Google Scholar 

  20. Coratella G, Longo S, Borrelli M, Doria C, Cè E, Esposito F (2020) Vastus intermedius muscle architecture predicts the late phase of the knee extension rate of force development in recreationally resistance-trained men [published online ahead of print, 2020 May 6]. J Sci Med Sport. https://doi.org/10.1016/j.jsams.2020.04.006

    Article  PubMed  Google Scholar 

  21. Connolly DA, McHugh MP, Padilla-Zakour OI, Carlson L, Sayers SP (2006) Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med 40(8):679–683. https://doi.org/10.1136/bjsm.2005.025429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trombold JR, Barnes JN, Critchley L, Coyle EF (2010) Ellagitannin consumption improves strength recovery 2–3 d after eccentric exercise. Med Sci Sports Exerc 42(3):493–498. https://doi.org/10.1249/MSS.0b013e3181b64edd

    Article  CAS  PubMed  Google Scholar 

  23. Tanabe Y, Maeda S, Akazawa N et al (2015) Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Eur J Appl Physiol 115(9):1949–1957. https://doi.org/10.1007/s00421-015-3170-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McLeay Y, Barnes MJ, Mundel T, Hurst SM, Hurst RD, Stannard SR (2012) Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr 9(1):19. https://doi.org/10.1186/1550-2783-9-19Published 2012 Jul 11

    Article  PubMed  PubMed Central  Google Scholar 

  25. Panza VP, Brunetta HS, de Oliveira MV, Nunes EA, da Silva EL (2019) Effect of mate tea (Ilex paraguariensis) on the expression of the leukocyte NADPH oxidase subunit p47phox and on circulating inflammatory cytokines in healthy men: a pilot study. Int J Food Sci Nutr 70(2):212–221. https://doi.org/10.1080/09637486.2018.1486393

    Article  CAS  PubMed  Google Scholar 

  26. Bracesco N, Sanchez AG, Contreras V, Menini T, Gugliucci A (2011) Recent advances on Ilex paraguariensis research: minireview. J Ethnopharmacol 136(3):378–384. https://doi.org/10.1016/j.jep.2010.06.032

    Article  CAS  PubMed  Google Scholar 

  27. Panza VP, Diefenthaeler F, Tamborindeguy AC et al (2016) Effects of mate tea consumption on muscle strength and oxidative stress markers after eccentric exercise. Br J Nutr 115(8):1370–1378. https://doi.org/10.1017/S000711451600043X

    Article  CAS  PubMed  Google Scholar 

  28. Patrizio F, Ditroilo M, Felici F et al (2018) The acute effect of Quercetin on muscle performance following a single resistance training session. Eur J Appl Physiol 118(5):1021–1031. https://doi.org/10.1007/s00421-018-3834-y

    Article  CAS  PubMed  Google Scholar 

  29. Newton MJ, Sacco P, Chapman D, Nosaka K (2013) Do dominant and non-dominant arms respond similarly to maximal eccentric exercise of the elbow flexors? J Sci Med Sport 16(2):166–171. https://doi.org/10.1016/j.jsams.2012.06.001

    Article  PubMed  Google Scholar 

  30. MacIntyre DL, Sorichter S, Mair J, Berg A, McKenzie DC (2001) Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. Eur J Appl Physiol 84(3):180–186. https://doi.org/10.1007/s004210170002

    Article  CAS  PubMed  Google Scholar 

  31. Mahoney DJ, Safdar A, Parise G et al (2008) Gene expression profiling in human skeletal muscle during recovery from eccentric exercise. Am J Physiol Regul Integr Comp Physiol 294(6):R1901–R1910. https://doi.org/10.1152/ajpregu.00847.2007

    Article  CAS  PubMed  Google Scholar 

  32. Serafini M, Maiani G, Ferro-Luzzi A (1998) Alcohol-free red wine enhances plasma antioxidant capacity in humans. J Nutr 128(6):1003–1007. https://doi.org/10.1093/jn/128.6.1003

    Article  CAS  PubMed  Google Scholar 

  33. Giustarini D, Dalle-Donne I, Milzani A, Fanti P, Rossi R (2013) Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat Protoc 8(9):1660–1669. https://doi.org/10.1038/nprot.2013.095

    Article  CAS  PubMed  Google Scholar 

  34. Cohen J (1992) A power primer. Psychol Bull 112(1):155–159. https://doi.org/10.1037//0033-2909.112.1.155

    Article  CAS  PubMed  Google Scholar 

  35. Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 4:863. https://doi.org/10.3389/fpsyg.2013.00863

    Article  PubMed  PubMed Central  Google Scholar 

  36. Romano J, Kromrey JD, Coraggio J et al (2006) Exploring methods for evaluating group differences on the NSSE and other surveys: are the t-test and Cohen’s d indices the most appropriate choices? https://www.coedu.usf.edu/main/departments/me/documents/methodsforevaluatinggroup.pdf. Accessed Dec 2014

  37. Alexander SP (2006) Flavonoids as antagonists at A1 adenosine receptors. Phytother Res 20(11):1009–1012. https://doi.org/10.1002/ptr.1975

    Article  CAS  PubMed  Google Scholar 

  38. Markowicz DHB, Oliveira DMR, Matsumoto RLT, Carvalho PDO, Ribeiro ML (2007) Yerba mate: pharmacological properties, research and biotechnology. Med Aromat Plant Sci Biotecnol 23:37–46

    Google Scholar 

  39. Pereira Panza VS, Diefenthaeler F, da Silva EL (2015) Benefits of dietary phytochemical supplementation on eccentric exercise-induced muscle damage: Is including antioxidants enough? Nutrition 31(9):1072–1082. https://doi.org/10.1016/j.nut.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  40. Puangpraphant S, de Mejia EG (2009) Saponins in yerba mate tea ( Ilex paraguariensis A. St.-Hil) and quercetin synergistically inhibit iNOS and COX-2 in lipopolysaccharide-induced macrophages through NFkappaB pathways. J Agric Food Chem 57(19):8873–8883. https://doi.org/10.1021/jf902255h

    Article  CAS  PubMed  Google Scholar 

  41. Arçari DP, Bartchewsky W Jr, dos Santos TW et al (2001) Anti-inflammatory effects of yerba maté extract (Ilex paraguariensis) ameliorate insulin resistance in mice with high fat diet-induced obesity. Mol Cell Endocrinol 335(2):110–115. https://doi.org/10.1016/j.mce.2011.01.003

    Article  CAS  Google Scholar 

  42. Kim DH, Ohnishi ST, Ikemoto N (1983) Kinetic studies of calcium release from sarcoplasmic reticulum in vitro. J Biol Chem 258(16):9662–9668

    CAS  PubMed  Google Scholar 

  43. Peralta IN, Cogoi L, Filip R, Anesini C (2013) Prevention of hydrogen peroxide-induced red blood cells lysis by Ilex paraguariensis aqueous extract: participation of phenolic and xanthine compounds. Phytother Res 27(2):192–198. https://doi.org/10.1002/ptr.4700

    Article  CAS  PubMed  Google Scholar 

  44. Bonarska-Kujawa D, Cyboran-Mikołajczyk S, Kleszczyńska H (2015) Molecular mechanism of action of chlorogenic acid on erythrocyte and lipid membranes. Mol Membr Biol 32(2):46–54. https://doi.org/10.3109/09687688.2015.1031833

    Article  CAS  PubMed  Google Scholar 

  45. Oteiza PI, Erlejman AG, Verstraeten SV, Keen CL, Fraga CG (2005) Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clin Dev Immunol 12(1):19–25. https://doi.org/10.1080/10446670410001722168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Panza VS, Wazlawik E, Ricardo Schütz G, Comin L, Hecht KC, da Silva EL (2008) Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition 24(5):433–442. https://doi.org/10.1016/j.nut.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  47. Funes L, Carrera-Quintanar L, Cerdán-Calero M et al (2011) Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils' oxidative stress in chronic exercise. Eur J Appl Physiol 111(4):695–705. https://doi.org/10.1007/s00421-010-1684-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Leao Alimentos e Bebidas Co for providing the lyophilised instant mate tea. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)—Finance Code 001 and the National Council of Scientific Research (CNPq) Brazil for the provision of scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Diefenthaeler.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors. The authors also declare that Leao Alimentos e Bebidas Co. partially supported this study providing the lyophilised instant mate tea.

Ethical approval

The trial was approved by the Ethics Committee on Human Research of the Federal University of Santa Catarina. All procedures were conducted in accordance with ethical principles of Declaration of Helsinki.

Informed consent

Each participant was informed of the procedures of the study before signing a written consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1Suplementary Fig 1. Flow chart of the study (PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, B.M., Panza, V.P., Brunetta, H.S. et al. Effect of mate tea consumption on rapid force production after eccentric exercise: a randomized, controlled, crossover study. Sport Sci Health 16, 571–581 (2020). https://doi.org/10.1007/s11332-020-00669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-020-00669-9

Keywords

Navigation