Skip to main content

Advertisement

Log in

Influence of endurance training-induced weight loss on the levels of ghrelin and obestatin of obese women with polycystic ovary syndrome

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

Polycystic ovary syndrome is an observed plurimetabolic syndrome associated with central obesity and insulin resistance.

Aims

The purpose of the present study was to investigate the effects of 12-week training program on weight loss, serum ghrelin, acylated ghrelin, des-acylated ghrelin, and obestatin levels in obese sedentary women with polycystic ovary syndrome (PCOS).

Methods

To this end, thirty sedentary obese women with PCOS (mean age 31.07 ± 2.49 years, height 162.23 ± 2.39 cm, weight: 87.23 ± 4.48 kg, BMI 33.12 ± 0.92) were recruited from a multidisciplinary PCOS specialty clinic in Tabriz city in 2017 and evaluated before and after a 12-week training program, including 45 min per session of aerobic training at an intensity of 60–75% of age-predicted maximum heart rate (300 kcal/day).

Results

After the exercise program, body weight, waist circumference, and percentage body fat mass were decreased. Also, fasting glucose, insulin, and serum acylated ghrelin levels were significantly decreased (P < 0.05), but serum obestatin levels were significantly increased after training program (P < 0.05). Furthermore, serum ghrelin and des-acylated ghrelin concentrations were not significantly changed after the training program (P > 0.05).

Conclusions

The moderate aerobic exercise training is associated with improvements in obestatin and health profiles of obese women with PCOS without associated structured energy restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCOS:

Polycystic ovary syndrome

T2DM:

Type 2 diabetes

MS:

Metabolic syndrome

COCs:

Combination oral contraceptives

HOMA-IR:

Homeostatic model assessment of insulin resistance

AG:

Acylated ghrelin

DAG:

Des-acylated ghrelin

References

  1. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ (2010) The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod 25(2):544–551. https://doi.org/10.1093/humrep/dep399

    Article  Google Scholar 

  2. Randeva HS, Tan BK, Weickert MO, Lois K, Nestler JE, Sattar N, Lehnert H (2012) Cardiometabolic aspects of the polycystic ovary syndrome. Endocr Rev 33(5):812–841. https://doi.org/10.1210/er.2012-1003

    Article  CAS  Google Scholar 

  3. Sarray S, Madan S, Saleh LR, Mahmoud N, Almawi WY (2015) Validity of adiponectin-to-leptin and adiponectin-to-resistin ratios as predictors of polycystic ovary syndrome. Fertil Steril 104(2):460–466. https://doi.org/10.1016/j.fertnstert.2015.05.007

    Article  CAS  Google Scholar 

  4. Carreau AM, Baillargeon JP (2015) PCOS in adolescence and type 2 diabetes. Curr Diab Rep 15(1):564. https://doi.org/10.1007/s11892-014-0564-3

    Article  CAS  Google Scholar 

  5. Ciaraldi TP, Aroda V, Mudaliar S, Chang RJ, Henry RR (2009) Polycystic ovary syndrome is associated with tissue-specific differences in insulin resistance. J Clin Endocrinol Metab 94(1):157–163. https://doi.org/10.1210/jc.2008-1492

    Article  CAS  Google Scholar 

  6. Li Y, Lin H, Pan P, Yang D, Zhang Q (2018) Impact of central obesity on women with polycystic ovary syndrome undergoing in vitro fertilization. BioRes Open Access 7(1):116–122. https://doi.org/10.1089/biores.2017.0040

    Article  CAS  Google Scholar 

  7. Rahmanpour H, Jamal L, Mousavinasab SN, Esmailzadeh A, Azarkhish K (2012) Association between polycystic ovarian syndrome, overweight, and metabolic syndrome in adolescents. J Pediatr Adolesc Gynecol 25(3):208–212. https://doi.org/10.1016/j.jpag.2012.02.004

    Article  Google Scholar 

  8. Delporte C (2013) Structure and physiological actions of ghrelin. Scientifica 2013:518909–518909. https://doi.org/10.1155/2013/518909

    Article  CAS  Google Scholar 

  9. Mihalache L, Gherasim A, Nita O, Ungureanu MC, Padureanu SS, Gavril RS, Arhire LI (2016) Effects of ghrelin in energy balance and body weight homeostasis. Horm (Athens Greece) 15(2):186–196. https://doi.org/10.14310/horm.2002.1672

    Article  Google Scholar 

  10. Mackelvie KJ, Meneilly GS, Elahi D, Wong AC, Barr SI, Chanoine JP (2007) Regulation of appetite in lean and obese adolescents after exercise: role of acylated and desacyl ghrelin. J Clin Endocrinol Metab 92(2):648–654. https://doi.org/10.1210/jc.2006-1028

    Article  CAS  Google Scholar 

  11. Ferrini F, Salio C, Lossi L, Merighi A (2009) Ghrelin in central neurons. Curr Neuropharmacol 7(1):37–49. https://doi.org/10.2174/157015909787602779

    Article  CAS  Google Scholar 

  12. Vatansever-Ozen S, Tiryaki-Sonmez G, Bugdayci G, Ozen G (2011) The effects of exercise on food intake and hunger: relationship with acylated ghrelin and leptin. J Sports Sci Med 10(2):283–291

    Google Scholar 

  13. Inhoff T, Monnikes H, Noetzel S, Stengel A, Goebel M, Dinh QT, Riedl A, Bannert N, Wisser AS, Wiedenmann B, Klapp BF, Tache Y, Kobelt P (2008) Desacyl ghrelin inhibits the orexigenic effect of peripherally injected ghrelin in rats. Peptides 29(12):2159–2168. https://doi.org/10.1016/j.peptides.2008.09.014

    Article  CAS  Google Scholar 

  14. Kumar R, Salehi A, Rehfeld JF, Hoglund P, Lindstrom E, Hakanson R (2010) Proghrelin peptides: desacyl ghrelin is a powerful inhibitor of acylated ghrelin, likely to impair physiological effects of acyl ghrelin but not of obestatin A study of pancreatic polypeptide secretion from mouse islets. Regul Pept 164(2–3):65–70. https://doi.org/10.1016/j.regpep.2010.06.005

    Article  CAS  Google Scholar 

  15. Depoortere I, Thijs T, Moechars D, De Smet B, Ver Donck L, Peeters TL (2008) Effect of peripheral obestatin on food intake and gastric emptying in ghrelin-knockout mice. Br J Pharmacol 153(7):1550–1557. https://doi.org/10.1038/sj.bjp.0707683

    Article  CAS  Google Scholar 

  16. Broom DR, Stensel DJ, Bishop NC, Burns SF (1985) Miyashita M (2007) Exercise-induced suppression of acylated ghrelin in humans. J Appl Physiol 102(6):2165–2171. https://doi.org/10.1152/japplphysiol.00759.2006

    Article  CAS  Google Scholar 

  17. Erdmann J, Tahbaz R, Lippl F, Wagenpfeil S, Schusdziarra V (2007) Plasma ghrelin levels during exercise—effects of intensity and duration. Regul Pept 143(1–3):127–135. https://doi.org/10.1016/j.regpep.2007.05.002

    Article  CAS  Google Scholar 

  18. Marzullo P, Salvadori A, Brunani A, Verti B, Walker GE, Fanari P, Tovaglieri I, De Medici C, Savia G, Liuzzi A (2008) Acylated ghrelin decreases during acute exercise in the lean and obese state. Clin Endocrinol (Oxf) 69(6):970–971. https://doi.org/10.1111/j.1365-2265.2008.03275.x

    Article  Google Scholar 

  19. Mason C, Xiao L, Imayama I, Duggan CR, Campbell KL, Kong A, Wang CY, Alfano CM, Blackburn GL, Foster-Schubert KE, McTiernan A (2015) The effects of separate and combined dietary weight loss and exercise on fasting ghrelin concentrations in overweight and obese women: a randomized controlled trial. Clin Endocrinol (Oxf) 82(3):369–376. https://doi.org/10.1111/cen.12483

    Article  CAS  Google Scholar 

  20. Ravussin E, Tschop M, Morales S, Bouchard C, Heiman ML (2001) Plasma ghrelin concentration and energy balance: overfeeding and negative energy balance studies in twins. J Clin Endocrinol Metab 86(9):4547–4551. https://doi.org/10.1210/jcem.86.9.8003

    Article  CAS  Google Scholar 

  21. Pradhan G, Samson SL, Sun Y (2013) Ghrelin: much more than a hunger hormone. Curr Opin Clin Nutr Metab Care 16(6):619–624. https://doi.org/10.1097/MCO.0b013e328365b9be

    Article  CAS  Google Scholar 

  22. Messinis IE, Messini CI, Anifandis G, Dafopoulos K (2015) Polycystic ovaries and obesity. Best Pract Res Clin Obstet Gynaecol 29(4):479–488. https://doi.org/10.1016/j.bpobgyn.2014.11.001

    Article  Google Scholar 

  23. Greenwood EA, Noel MW, Kao CN, Shinkai K, Pasch LA, Cedars MI, Huddleston HG (2016) Vigorous exercise is associated with superior metabolic profiles in polycystic ovary syndrome independent of total exercise expenditure. Fertil Steril 105(2):486–493. https://doi.org/10.1016/j.fertnstert.2015.10.020

    Article  CAS  Google Scholar 

  24. Yavari M, Rouholamin S, Tansaz M, Esmaeili S (2016) Herbal Treatment of oligomenorrhea with sesamum indicum l.: a randomized controlled trial. Georgian Math J 5(3):114–121

    Google Scholar 

  25. Ferriman D, Gallwey JD (1961) Clinical assessment of body hair growth in women. J Clin Endocrinol Metab 21:1440–1447. https://doi.org/10.1210/jcem-21-11-1440

    Article  CAS  Google Scholar 

  26. Ornstein RM, Copperman NM, Jacobson MS (2011) Effect of weight loss on menstrual function in adolescents with polycystic ovary syndrome. J Pediatr Adolesc Gynecol 24(3):161–165. https://doi.org/10.1016/j.jpag.2011.01.002

    Article  Google Scholar 

  27. WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403):157–163. https://doi.org/10.1016/s0140-6736(03)15268-3

    Article  Google Scholar 

  28. World Health Organization. Regional Office for the Western P (2000) The Asia-pacific perspective: redefining obesity and its treatment. Health Communications Australia, Sydney

    Google Scholar 

  29. Dehghan M, Merchant AT (2008) Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr J 7:26. https://doi.org/10.1186/1475-2891-7-26

    Article  Google Scholar 

  30. Foster-Schubert KE, Alfano CM, Duggan CR, Xiao L, Campbell KL, Kong A, Bain CE, Wang CY, Blackburn GL, McTiernan A (2012) Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. Obesity (Silver Spring Md) 20(8):1628–1638. https://doi.org/10.1038/oby.2011.76

    Article  CAS  Google Scholar 

  31. Zehsaz F, Farhangi N, Mirheidari L (2014) The effect of aerobic training on CXL5, tumor necrosis factor alpha and insulin resistance index (HOMA-IR) in sedentary obese women. Cent Eur J Immunol 39(3):365–369. https://doi.org/10.5114/ceji.2014.45949

    Article  CAS  Google Scholar 

  32. Reinehr T, de Sousa G, Roth CL (2008) Obestatin and ghrelin levels in obese children and adolescents before and after reduction of overweight. Clin Endocrinol (Oxf) 68(2):304–310. https://doi.org/10.1111/j.1365-2265.2007.03042.x

    Article  CAS  Google Scholar 

  33. Ozkan Y, Timurkan ES, Aydin S, Sahin I, Timurkan M, Citil C, Kalayci M, Yilmaz M, Aksoy A, Catak Z (2013) Acylated and desacylated ghrelin, preptin, leptin, and nesfatin-1 Peptide changes related to the body mass index. Int J Endocrinol 2013:236085. https://doi.org/10.1155/2013/236085

    Article  CAS  Google Scholar 

  34. Reinehr T, Enriori PJ, Harz K, Cowley MA, Roth CL (2006) Pancreatic polypeptide in obese children before and after weight loss. Int J Obes (Lond) 30(10):1476–1481. https://doi.org/10.1038/sj.ijo.0803393

    Article  CAS  Google Scholar 

  35. Moran LJ, Pasquali R, Teede HJ, Hoeger KM, Norman RJ (2009) Treatment of obesity in polycystic ovary syndrome: a position statement of the androgen excess and polycystic ovary syndrome society. Fertil Steril 92(6):1966–1982. https://doi.org/10.1016/j.fertnstert.2008.09.018

    Article  Google Scholar 

  36. Orio F, Giallauria F, Palomba S, Manguso F, Orio M, Tafuri D, Lombardi G, Carmina E, Colao A, Vigorito C (2008) Metabolic and cardiopulmonary effects of detraining after a structured exercise training programme in young PCOS women. Clin Endocrinol (Oxf) 68(6):976–981. https://doi.org/10.1111/j.1365-2265.2007.03117.x

    Article  CAS  Google Scholar 

  37. Taghavi M, Sardar MA, Ayyaz F, Rokni H (2011) Effect of aerobic training program on obesity and insulin resistance in young women with polycystic ovary syndrome. Iran J Diabetes Obes 3(1):41–45

    Google Scholar 

  38. Marandi SM, Abadi NGB, Esfarjani F, Mojtahedi H, Ghasemi G (2013) Effects of intensity of aerobics on body composition and blood lipid profile in obese/overweight females. Int J Prev Med 4(Suppl 1):S118–S125

    Google Scholar 

  39. Chiu C-H, Ko M-C, Wu L-S, Yeh D-P, Kan N-W, Lee P-F, Hsieh J-W, Tseng C-Y, Ho C-C (2017) Benefits of different intensity of aerobic exercise in modulating body composition among obese young adults: a pilot randomized controlled trial. Health Qual Life Outcomes 15(1):168. https://doi.org/10.1186/s12955-017-0743-4

    Article  Google Scholar 

  40. Gómez-Hernández A, Beneit N, Díaz-Castroverde S, Escribano Ó (2016) Differential role of adipose tissues in obesity and related metabolic and vascular complications. Int J Endocrinol 2016:1216783–1216783. https://doi.org/10.1155/2016/1216783

    Article  CAS  Google Scholar 

  41. Palomba S, Giallauria F, Falbo A, Russo T, Oppedisano R, Tolino A, Colao A, Vigorito C, Zullo F, Orio F (2008) Structured exercise training programme versus hypocaloric hyperproteic diet in obese polycystic ovary syndrome patients with anovulatory infertility: a 24-week pilot study. Hum Reprod 23(3):642–650. https://doi.org/10.1093/humrep/dem391

    Article  CAS  Google Scholar 

  42. Moran LJ, Noakes M, Clifton PM, Tomlinson L, Galletly C, Norman RJ (2003) Dietary composition in restoring reproductive and metabolic physiology in overweight women with polycystic ovary syndrome. J Clin Endocrinol Metab 88(2):812–819. https://doi.org/10.1210/jc.2002-020815

    Article  CAS  Google Scholar 

  43. Vigorito C, Giallauria F, Palomba S, Cascella T, Manguso F, Lucci R, De Lorenzo A, Tafuri D, Lombardi G, Colao A, Orio F (2007) Beneficial effects of a three-month structured exercise training program on cardiopulmonary functional capacity in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 92(4):1379–1384. https://doi.org/10.1210/jc.2006-2794

    Article  CAS  Google Scholar 

  44. Nasiri S, Fathi R, Ghanbari-Niaki A (2014) The effect of endurance training on ghrelin, insulin, glucose and estrogen in male rats. Zahedan J Res Med Sci 16(2):42–44

    Google Scholar 

  45. Haghshenas R, Jafari M, Ravasi A, Kordi M, Gilani N, Shariatzadeh M, Hedayati M, Rahimi M (2014) The effect of eight weeks endurance training and high-fat diet on appetite-regulating hormones in rat plasma. Iran J Basic Med Sci 17(4):237–243

    Google Scholar 

  46. De Souza MJ, Hontscharuk R, Olmsted M, Kerr G, Williams NI (2007) Drive for thinness score is a proxy indicator of energy deficiency in exercising women. Appetite 48(3):359–367. https://doi.org/10.1016/j.appet.2006.10.009

    Article  Google Scholar 

  47. Chabot F, Caron A, Laplante M, St-Pierre DH (2014) Interrelationships between ghrelin, insulin and glucose homeostasis: physiological relevance. World J Diabetes 5(3):328–341. https://doi.org/10.4239/wjd.v5.i3.328

    Article  Google Scholar 

  48. Ghanbari-Niaki A, Saghebjoo M, Rahbarizadeh F, Hedayati M, Rajabi H (2008) A single circuit-resistance exercise has no effect on plasma obestatin levels in female college students. Peptides 29(3):487–490. https://doi.org/10.1016/j.peptides.2007.11.002

    Article  CAS  Google Scholar 

  49. Ghanbari-Niaki A, Jafari A, Abednazari H, Nikbakht H (2008) Treadmill exercise reduces obestatin concentrations in rat fundus and small intestine. Biochem Biophys Res Commun 372(4):741–745. https://doi.org/10.1016/j.bbrc.2008.05.097

    Article  CAS  Google Scholar 

  50. Haider DG, Schindler K, Prager G, Bohdjalian A, Luger A, Wolzt M, Ludvik B (2007) Serum retinol-binding protein 4 is reduced after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 92(3):1168–1171. https://doi.org/10.1210/jc.2006-1839

    Article  CAS  Google Scholar 

  51. Garcia JM, Iyer D, Poston WS, Marcelli M, Reeves R, Foreyt J, Balasubramanyam A (2006) Rise of plasma ghrelin with weight loss is not sustained during weight maintenance. Obes (Silver Spring) 14(10):1716–1723. https://doi.org/10.1038/oby.2006.197

    Article  CAS  Google Scholar 

  52. Reinehr T, Roth CL, Alexy U, Kersting M, Kiess W, Andler W (2005) Ghrelin levels before and after reduction of overweight due to a low-fat high-carbohydrate diet in obese children and adolescents. Int J Obes (Lond) 29(4):362–368. https://doi.org/10.1038/sj.ijo.0802913

    Article  CAS  Google Scholar 

  53. Hassouna R, Zizzari P, Tolle V (2010) The ghrelin/obestatin balance in the physiological and pathological control of growth hormone secretion, body composition and food intake. J Neuroendocrinol 22(7):793–804. https://doi.org/10.1111/j.1365-2826.2010.02019.x

    Article  CAS  Google Scholar 

  54. Ren AJ, Guo ZF, Wang YK, Lin L, Zheng X, Yuan WJ (2009) Obestatin, obesity and diabetes. Peptides 30(2):439–444. https://doi.org/10.1016/j.peptides.2008.10.002

    Article  CAS  Google Scholar 

  55. Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, Hsueh AJ (2005) Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science 310(5750):996–999. https://doi.org/10.1126/science.1117255

    Article  CAS  Google Scholar 

  56. Hill BR, Rolls BJ, Roe LS, De Souza MJ, Williams NI (2013) Ghrelin and peptide YY increase with weight loss during a 12-month intervention to reduce dietary energy density in obese women. Peptides 49:138–144. https://doi.org/10.1016/j.peptides.2013.09.009

    Article  CAS  Google Scholar 

  57. Tiryaki-Sonmez G, Ozen S, Bugdayci G, Karli U, Ozen G, Cogalgil S, Schoenfeld B, Sozbir K, Aydin K (2013) Effect of exercise on appetite-regulating hormones in overweight women. Biol Sport 30(2):75–80. https://doi.org/10.5604/20831862.1044220

    Article  CAS  Google Scholar 

  58. Schubert MM, Sabapathy S, Leveritt M, Desbrow B (2014) Acute exercise and hormones related to appetite regulation: a meta-analysis. Sports Med 44(3):387–403. https://doi.org/10.1007/s40279-013-0120-3

    Article  Google Scholar 

  59. Rodriguez A, Gomez-Ambrosi J, Catalan V, Gil MJ, Becerril S, Sainz N, Silva C, Salvador J, Colina I, Fruhbeck G (2009) Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes (Lond) 33(5):541–552. https://doi.org/10.1038/ijo.2009.40

    Article  CAS  Google Scholar 

  60. King JA, Wasse LK, Stensel DJ, Nimmo MA (2013) Exercise and ghrelin. A narrative overview of research. Appetite 68:83–91. https://doi.org/10.1016/j.appet.2013.04.018

    Article  Google Scholar 

  61. Wasse LK, Sunderland C, King JA, Miyashita M, Stensel DJ (2013) The influence of vigorous running and cycling exercise on hunger perceptions and plasma acylated ghrelin concentrations in lean young men. Appl Physiol Nutr Metab 38(1):1–6. https://doi.org/10.1139/apnm-2012-0154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was designed by ZF and FN; data were collected and analyzed by GM; data interpretation and manuscript preparation were undertaken by ZF, FN and GM. All authors approved the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Zehsaz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This research has been approved by the Medical Committee of the Faculty of Medical Sciences, Islamic Azad University of Tabriz, with the Ethical Code number (56935/5/11/13) and all procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehsaz, F., Farhangi, N. & Gahremani, M. Influence of endurance training-induced weight loss on the levels of ghrelin and obestatin of obese women with polycystic ovary syndrome. Sport Sci Health 16, 703–711 (2020). https://doi.org/10.1007/s11332-020-00646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-020-00646-2

Keywords

Navigation