Skip to main content

Advertisement

Log in

Sacubitril/valsartan mitigated intermittent hypoxia related intestinal microbiota alteration and aortic injury

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Objective

To investigate the influence of sacubitril valsartan sodium (SVS) on chronic intermittent hypoxia (IH) related gut microbiome composition alteration and aortic injury.

Methods

Experiments were performed using SD rats, which were divided into three groups: control, IH, and SVS group. O2 concentration was decreased to 7–8% at nadir approximately every 3 min in IH group (8 h per day for 6 weeks) or was left unchanged in control group. Rats in SVS group were orally gavaged with SVS at the dosage of 30 mg/kg/day (2 weeks after chronic IH exposure). At week 6, fecal and aortic samples were harvested for 16 s rDNA analysis and histological analysis, respectively.

Results

Principal coordinate analysis and non-metric multidimensional scaling analysis indicated that the bacterial community was altered by chronic IH exposure, while SVS treatment restored the intestinal microbial communities. Further analysis showed that IH decreased the relative abundance of Lactobacillus and Prevotella, while rats treated with SVS was enriched with Firmicutes, Bacilli, Prevotellaceae, and Lactobacillus, which was similar to control rats. Immunohistochemical staining showed that SVS prevented the upregulation of transforming growth factor-β1 and tumor necrosis factor-alpha in the aorta.

Conclusion

SVS prevented aortic adverse response to IH, possibly through modulating intestinal microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Benjafield A et al (2018) in B67. Risk and prevalence of sleep disordered breathing A3962-A3962 (American Thoracic Society)

  2. Devulapally K, Pongonis R Jr, Khayat R (2009) OSA: the new cardiovascular disease: part II: overview of cardiovascular diseases associated with obstructive sleep apnea. Heart Fail Rev 14:155–164. https://doi.org/10.1007/s10741-008-9101-2

    Article  PubMed  Google Scholar 

  3. Drager LF et al (2005) Early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med 172:613–618. https://doi.org/10.1164/rccm.200503-340OC

    Article  PubMed  Google Scholar 

  4. Drager LF, Polotsky VY, Lorenzi-Filho G (2011) Obstructive sleep apnea: an emerging risk factor for atherosclerosis. Chest 140:534–542. https://doi.org/10.1378/chest.10-2223

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ma L, Zhang J, Liu Y (2016) Roles and mechanisms of obstructive sleep apnea-hypopnea syndrome and chronic intermittent hypoxia in atherosclerosis: evidence and prospective. Oxid Med Cell Longev 2016:8215082. https://doi.org/10.1155/2016/8215082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang WH, Kitai T, Hazen SL (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120:1183–1196. https://doi.org/10.1161/circresaha.117.309715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farré N, Farré R, Gozal D (2018) Sleep apnea morbidity: a consequence of microbial-immune cross-talk? Chest 154:754–759. https://doi.org/10.1016/j.chest.2018.03.001

    Article  PubMed  Google Scholar 

  8. Zhang H et al (2019) Neprilysin inhibitor-angiotensin II receptor blocker combination therapy (sacubitril/valsartan) suppresses atherosclerotic plaque formation and inhibits inflammation in apolipoprotein E-deficient mice. Sci Rep 9:6509. https://doi.org/10.1038/s41598-019-42994-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu D, Wang J, Zhang H, Shan Q, Zhou B (2020) Renal denervation improves chronic intermittent hypoxia induced hypertension and cardiac fibrosis and balances gut microbiota. Life Sci 262:118500

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y et al (2014) Sulforaphane attenuation of type 2 diabetes-induced aortic damage was associated with the upregulation of Nrf2 expression and function. Oxidative Med Cell longev 2014:123963. https://doi.org/10.1155/2014/123963

    Article  CAS  Google Scholar 

  11. Zhang F et al (2020) 5-Fluorouracil induced dysregulation of the microbiome-gut-brain axis manifesting as depressive like behaviors in rats. Biochim Biophys Acta Mol Basis Dis 1866:165884. https://doi.org/10.1016/j.bbadis.2020.165884

    Article  CAS  PubMed  Google Scholar 

  12. Langille MG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maslowski KM et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286. https://doi.org/10.1038/nature08530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lucking EF et al (2018) Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut microbiota composition in adult male guinea-pigs. EBioMedicine 38:191–205. https://doi.org/10.1016/j.ebiom.2018.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allahdadi KJ, Walker BR, Kanagy NL (2005) Augmented endothelin vasoconstriction in intermittent hypoxia-induced hypertension. Hypertension (Dallas, Tex. : 1979) 45:705–709. https://doi.org/10.1161/01.hyp.0000153794.52852.04

    Article  CAS  PubMed  Google Scholar 

  16. Gabryelska A, Łukasik ZM, Makowska JS, Białasiewicz P (2018) Obstructive sleep apnea: from intermittent hypoxia to cardiovascular complications via blood platelets. Front Neurol 9:635. https://doi.org/10.3389/fneur.2018.00635

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sauer AJ et al (2019) Practical guidance on the use of sacubitril/valsartan for heart failure. Heart Fail Rev 24:167–176. https://doi.org/10.1007/s10741-018-9757-1

    Article  CAS  PubMed  Google Scholar 

  18. Yandrapalli S, Khan MH, Rochlani Y, Aronow WS (2018) Sacubitril/valsartan in cardiovascular disease: evidence to date and place in therapy. Ther Adv Cardiovasc Dis 12:217–231. https://doi.org/10.1177/1753944718784536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moreno-Indias I et al (2015) Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea. Eur Respir J 45:1055–1065. https://doi.org/10.1183/09031936.00184314

    Article  PubMed  Google Scholar 

  20. Tripathi A et al (2019) Intermittent hypoxia and hypercapnia reproducibly change the gut microbiome and metabolome across rodent model systems. mSystems 4. https://doi.org/10.1128/mSystems.00058-19

  21. Durgan DJ et al (2016) Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 67:469–474. https://doi.org/10.1161/hypertensionaha.115.06672

    Article  CAS  PubMed  Google Scholar 

  22. Tripathi A et al (2018) Intermittent hypoxia and hypercapnia, a hallmark of obstructive sleep apnea, alters the gut microbiome and metabolome. mSystems 3. https://doi.org/10.1128/mSystems.00020-18

  23. Yang T et al (2015) Gut dysbiosis is linked to hypertension. Hypertension (Dallas, Tex. : 1979) 65:1331–1340. https://doi.org/10.1161/hypertensionaha.115.05315

    Article  CAS  PubMed  Google Scholar 

  24. Sanada TJ et al (2020) Gut microbiota modification suppresses the development of pulmonary arterial hypertension in an SU5416/hypoxia rat model. Pulm Circ 10:2045894020929147. https://doi.org/10.1177/2045894020929147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li J et al (2017) Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5:14. https://doi.org/10.1186/s40168-016-0222-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zuo K et al (2019) Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. GigaScience 8. https://doi.org/10.1093/gigascience/giz058

  27. Jonsson AL, Bäckhed F (2017) Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 14:79–87. https://doi.org/10.1038/nrcardio.2016.183

    Article  CAS  PubMed  Google Scholar 

  28. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667. https://doi.org/10.1161/circulationaha.105.556746

    Article  CAS  PubMed  Google Scholar 

  29. Murphy AM, Thomas A, Crinion SJ, Kent BD, Tambuwala MM (2017) Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation. Eur Respir J 49. https://doi.org/10.1183/13993003.01731-2016

  30. Hakansson A, Molin G (2011) Gut microbiota and inflammation. Nutrients 3:637–682. https://doi.org/10.3390/nu3060637

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cui L, Zhao T, Hu H, Zhang W, Hua X (2017) Association study of gut flora in coronary heart disease through high-throughput sequencing. Biomed Res Int 2017:3796359. https://doi.org/10.1155/2017/3796359

  32. Mayerhofer CC et al (2020) Low fibre intake is associated with gut microbiota alterations in chronic heart failure. ESC Heart Fail 7:456–466

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liao P-H et al (2016) Lactobacillus reuteri GMNL-263 reduces hyperlipidaemia and the heart failure process in high-calorie diet-fed induced heart dysfunction in rats. J Funct Foods 20:226–235

    Article  CAS  Google Scholar 

  34. Zhao L, Xing C, Sun W, Hou G, Yang G (2018) Lactobacillus supplementation prevents cisplatin-induced cardiotoxicity possibly by inflammation inhibition. Cancer Chemother Pharmacol 82:999–1008. https://doi.org/10.1007/s00280-018-3691-8

    Article  CAS  PubMed  Google Scholar 

  35. Toral M et al (2014) The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice. Clin Sci (London England : 1979) 127:33–45. https://doi.org/10.1042/cs20130339

    Article  Google Scholar 

  36. Malik M et al (2018) Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease. Circ Res 123:1091–1102. https://doi.org/10.1161/circresaha.118.313565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chaumais MC et al (2020) Additive protective effects of sacubitril/valsartan and bosentan on vascular remodeling in experimental pulmonary hypertension. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa200

    Article  Google Scholar 

Download references

Funding

The National Natural Science Foundation of China provided financial support in the form of National Natural Science funding (81800445). The sponsor had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Contributions

Animal experiment: Dasheng Lu and Jinfeng Wang; data analysis: Hongxiang Zhang and LiJuan Wu; project administration: Dasheng Lu; supervision: Dasheng Lu; writing: Dasheng Lu and Jinfeng Wang.

Corresponding authors

Correspondence to LiJuan Wu or Dasheng Lu.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of Wannan Medical College. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, H., Wu, L. et al. Sacubitril/valsartan mitigated intermittent hypoxia related intestinal microbiota alteration and aortic injury. Sleep Breath 27, 1769–1777 (2023). https://doi.org/10.1007/s11325-023-02781-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-023-02781-9

Keywords

Navigation