Skip to main content

Advertisement

Log in

Prospect of thioredoxin as a possibly effective tool to combat OSAHS

  • Sleep Breathing Physiology and Disorders • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Obstructive sleep apnea–hypopnea syndrome (OSAHS) is characterized by recurrent upper airway disturbances during sleep leading to episodes of hypopnea or apnea, followed by hypoxemia and subsequent reoxygenation. It is believed that this reoxygenation/reperfusion stage leads to oxidative stress, which then leads to inflammation and cardiovascular diseases. The treatments of patient with OSAHS include surgical and non-surgical therapies with various side effects and common complaints. Therefore, it is important to develop a new, safe, and effective therapeutic treatment. As a small-molecule multifunctional protein, thioredoxin (TRX) has antioxidant and redox regulatory functions at the active site Cys-Gly-Pro. TRX prevents inflammation by suppressing the production of pro-inflammatory cytokines rather than suppressing the immune response.

Methods

We review the papers on the pathophysiological process of OSAHS and the antioxidative and anti-inflammatory effects of TRX.

Results

TRX may play a role in OSAHS by scavenging ROS, blocking the production of inflammatory cytokines, inhibiting the migration and activation of neutrophils, and controlling the activation of ROS-dependent inflammatory signals by regulating the redox state of intracellular target particles. Furthermore, TRX regulates the synthesis, stability, and activity of hypoxia-inducible factor 1 (HIF-1). TRX also has an inhibitory effect on endoplasmic reticulum- and mitochondria-induced apoptosis by regulating the expression of BAX, BCL2, p53, and ASK1.

Conclusion

Understanding the function of TRX may be useful for the treatment of OSAHS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

OSAHS :

The characteristic of obstructive sleep apnea–hypopnea syndrome

ROS :

Reactive oxygen species

TRX :

Thioredoxin

HIF-1 :

Hypoxia-inducible factor 1

BAX :

BCL2-associated X

BCL2 :

B-cell lymphoma-2

ASK1 :

Apoptosis signal-regulating kinase 1

NF-κB :

Nuclear factor-κB

CRP :

C-reactive protein

CPAP :

Continuous positive airway pressure

TRXR :

Thioredoxin reductase

NADPH :

Nicotinamide adenine dinucleotide phosphoric acid

IH :

Intermittent hypoxia

TCA :

Tricarboxylic acid

MAPK :

Mitogen-activated protein kinases

AP-1 :

Activated protein-1

GATA 4 :

Globin transcription factor 4

LPS :

Lipopolysaccharide

GSH :

Glutathione

ER :

Endoplasmic reticulum

UPR :

Unfolded protein response

IRE1 :

Inositol-requiring protein-1

PERK :

Protein kinase RNA-like ER kinase

ATF6 :

Activating transcription factor-6

CHOP :

C/EBP homologous protein

MAPKKK :

Mitogen-activated protein kinase kinase kinase

JNK :

C-Jun N-terminal kinase

MAP2Ks :

mitogen-activated protein kinase kinases

References

  1. W T, J B, M LV, et al (2018) Increased liver stiffness in patients with severe sleep apnoea and metabolic comorbidities. Eur Respir J 51

  2. Wu ZH, Yang XP, Niu X et al (2019) The relationship between obstructive sleep apnea hypopnea syndrome and gastroesophageal reflux disease: a meta-analysis. Sleep Breath Schlaf Atmung 23:389–397

    Article  PubMed  Google Scholar 

  3. Rivas M, Ratra A, Nugent K (2015) Obstructive sleep apnea and its effects on cardiovascular diseases: a narrative review. Anatolian J Cardiol 15:944–950

    Article  Google Scholar 

  4. Chan MTV, Wang CY, Seet E et al (2019) Association of unrecognized obstructive sleep apnea with postoperative cardiovascular events in patients undergoing major noncardiac surgery. JAMA 321:1788–1798

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mandavia R, Mehta N, Veer V (2020) Guidelines on the surgical management of sleep disorders: a systematic review. Laryngoscope 130:1070–1084

    Article  PubMed  Google Scholar 

  6. Lavie L, Lavie P (2009) Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J 33:1467–1484

    Article  CAS  PubMed  Google Scholar 

  7. Ryan S, McNicholas WT (2008) Intermittent hypoxia and activation of inflammatory molecular pathways in OSAS. Arch Physiol Biochem 114:261–266

    Article  CAS  PubMed  Google Scholar 

  8. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667

    Article  CAS  PubMed  Google Scholar 

  9. Mills PJ, Natarajan L, von Känel R et al (2009) Diurnal variability of C-reactive protein in obstructive sleep apnea. Sleep Breath Schlaf Atmung 13:415–420

    Article  PubMed  Google Scholar 

  10. Dyugovskaya L, Lavie P, Lavie L (2002) Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 165:934–939

    Article  PubMed  Google Scholar 

  11. Zhang D, Jia S, Wang H et al (2018) Effect of sustained hypoxia on autophagy of genioglossus muscle-derived stem cells. Med Sci Monit 24:2218–2224

    Article  PubMed  PubMed Central  Google Scholar 

  12. S S, S I, L F-S, et al (1991) Muscle fibre type and habitual snoring. Lancet (London, England) 337:597–599

  13. P H, DJ C, S W et al (2008) The surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. An assessment by the Australian and New Zealand intensive care society. Anaesthesia Intens Care 36:149–151

  14. Dyugovskaya L, Polyakov A, Lavie P et al (2008) Delayed neutrophil apoptosis in patients with sleep apnea. Am J Respir Crit Care Med 177:544–554

    Article  CAS  PubMed  Google Scholar 

  15. Hc L, Em W, Hs L et al (2017) Multilevel obstructive sleep apnea surgery. Adv Otorhinolaryngol 80:109–115

    Google Scholar 

  16. Tahiri Y, Viezel-Mathieu A, Aldekhayel S et al (2014) The effectiveness of mandibular distraction in improving airway obstruction in the pediatric population. Plast Teconstruct Surg 133:352e–359e

    Article  CAS  Google Scholar 

  17. Rossi DS, Romano M, Sweed AH et al (2019) Use of CAD-CAM technology to improve orthognathic surgery outcomes in patients with severe obstructive sleep apnoea syndrome. J Craniomaxillofac Surg 47:1331–1337

    Article  PubMed  Google Scholar 

  18. XH Y, HG L, X L et al (2012) Thioredoxin and impaired spatial learning and memory in the rats exposed to intermittent hypoxia. Chin Med J 125:3074–3080

  19. Suzuki YJ, Jain V, Park A-M et al (2006) Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radical Biol Med 40:1683–1692

    Article  CAS  Google Scholar 

  20. AM P, YJ S (2007) Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice. J Appl Physiol 102:1806–1814

  21. H T, Y M, A F et al (2013) Thioredoxin ameliorates cutaneous inflammation by regulating the epithelial production and release of pro-inflammatory cytokines. Front Immunol 4:269

  22. Q G, Y W, QY L et al (2013) Levels of thioredoxin are related to the severity of obstructive sleep apnea: based on oxidative stress concept. Sleep Breath Schlaf Atmung 17:311–316

  23. Matsuo Y, Yodoi J (2013) Extracellular thioredoxin: a therapeutic tool to combat inflammation. Cytokine Growth Factor Rev 24:345–353

    Article  CAS  PubMed  Google Scholar 

  24. H L, G W, J Z et al (2018) Inhibiting TrxR suppresses liver cancer by inducing apoptosis and eliciting potent antitumor immunity. Oncol Rep 40:3447–3457

  25. Iwata Y, Okamoto M, Hoshino T et al (2010) Elevated levels of thioredoxin 1 in the lungs and sera of idiopathic pulmonary fibrosis, non-specific interstitial pneumonia and cryptogenic organizing pneumonia. Int Med 49:2393–2400

    Article  CAS  Google Scholar 

  26. Matsuzawa A (2017) Thioredoxin and redox signaling: roles of the thioredoxin system in control of cell fate. Arch Biochem Biophys 617:101–105

    Article  CAS  PubMed  Google Scholar 

  27. Powis G, Montfort WR (2001) Properties and biological activities of thioredoxins. Ann Rev Biophys Biomol Struct 30:421–455

    Article  CAS  Google Scholar 

  28. HJ E, P M, R S (2015) Obstructive sleep apnea, oxidative stress, and cardiovascular disease: evidence from human studies. Oxidative Med Cell Longev 2015:608438

  29. Xf L, Xj Z, Yn L et al (2017) Estradiol regulates Txnip and prevents intermittent hypoxia-induced vascular injury. Sci Rep 7:10318

    Article  Google Scholar 

  30. Guzy RD, Hoyos B, Robin E et al (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metabol 1:401–408

    Article  CAS  Google Scholar 

  31. Paddenberg R, Ishaq B, Goldenberg A et al (2003) Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 284:L710-719

    Article  CAS  PubMed  Google Scholar 

  32. Quinlan CL, Goncalves RLS, Hey-Mogensen M et al (2014) The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J Biol Chem 289:8312–8325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. G P, S M, R S (2013) Reactive oxygen species production in peripheral blood neutrophils of obstructive sleep apnea patients. TheScientificWorldJournal 2013:421763

  34. Lavie L (2008) Intermittent hypoxia: the culprit of oxidative stress, vascular inflammation and dyslipidemia in obstructive sleep apnea. Exp Rev Respir Med 2:75–84

    Article  CAS  Google Scholar 

  35. UC Y, V R, G D et al (2016) Oxidative stress in metabolic disorders: pathogenesis, prevention, and therapeutics. Oxidative Med Cell Longev 2016:9137629

  36. Bonello S, Zähringer C, BelAiba R et al (2007) Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 27:755–761

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura H, Masutani H, Yodoi J (2006) Extracellular thioredoxin and thioredoxin-binding protein 2 in control of cancer. Semin Cancer Biol 16:444–451

    Article  CAS  PubMed  Google Scholar 

  38. N Y, M Y, SI H et al (2019) Thioredoxin reductase gene expression and activity among human T-cell lymphotropic virus type 1-infected patients. J Med Virol 91:865–871

  39. Kanzok SM, Fechner A, Bauer H et al (2001) Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science (New York, NY) 291:643–646

    Article  CAS  Google Scholar 

  40. Sw K, Hz C, Ms S et al (1998) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 273:6297–6302

    Article  Google Scholar 

  41. Zhou R, Yazdi AS, Menu P et al (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  PubMed  Google Scholar 

  42. E Y, S M, Y M et al (2014) Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 4:514

  43. Hou Y, Wang Y, He Q et al (2018) Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury. Behav Brain Res 336:32–39

    Article  CAS  PubMed  Google Scholar 

  44. Zhou L, Ouyang R, Luo H et al (2018) Dysfunction of Nrf2-ARE signaling pathway: potential pathogenesis in the development of neurocognitive impairment in patients with moderate to severe obstructive sleep apnea-hypopnea syndrome. Oxid Med Cell Longev 2018:3529709

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bindoli A, Rigobello M (2013) Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 18:1557–1593

    Article  CAS  PubMed  Google Scholar 

  46. Kim G, Jeong H, Yoon H et al (2020) Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages. BMB Rep 53:640–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tanito M, Masutani H, Kim Y et al (2005) Sulforaphane induces thioredoxin through the antioxidant-responsive element and attenuates retinal light damage in mice. Invest Ophthalmol Vis Sci 46:979–987

    Article  PubMed  Google Scholar 

  48. Malhotra D, Thimmulappa R, Mercado N et al (2011) Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. J Clin Investig 121:4289–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tedder TF, Steeber DA, Pizcueta P (1995) L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. J Exp Med 181:2259–2264

    Article  CAS  PubMed  Google Scholar 

  50. Watanabe R, Nakamura H, Masutani H et al (2010) Anti-oxidative, anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol Ther 127:261–270

    Article  CAS  PubMed  Google Scholar 

  51. Htoo AK, Greenberg H, Tongia S et al (2006) Activation of nuclear factor κB in obstructive sleep apnea: a pathway leading to systemic inflammation. Sleep Breath 10:43–50

    Article  PubMed  Google Scholar 

  52. Kheirandishgozal L, Gozal D (2019) Obstructive sleep apnea and inflammation: proof of concept based on two illustrative cytokines. Int J Mol Sci 20:459

    Article  CAS  PubMed  Google Scholar 

  53. Liu W, Nakamura H, Shioji K et al (2004) Thioredoxin-1 ameliorates myosin-induced autoimmune myocarditis by suppressing chemokine expressions and leukocyte chemotaxis in mice. Circulation 110:1276–1283

    Article  CAS  PubMed  Google Scholar 

  54. Billiet L, Furman C, Larigauderie G et al (2005) Extracellular human thioredoxin-1 inhibits lipopolysaccharide-induced interleukin-1beta expression in human monocyte-derived macrophages. J Biol Chem 280:40310–40318

    Article  CAS  PubMed  Google Scholar 

  55. Nakamura H, Herzenberg LA, Bai J et al (2001) Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis. Proc Natl Acad Sci U S A 98:15143–15148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. K A, E N, N P, et al (2018) The role of vitamin D in obstructive sleep apnoea syndrome. Breathe (Sheffield, England) 14:206–215

  57. Ahmad Y, Sharma NK, Garg I et al (2013) An insight into the changes in human plasma proteome on adaptation to hypobaric hypoxia. PloS one 8:e67548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285:27850–27858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu A, Frid M, Shimoda L et al (1998) Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol 275:L818-826

    CAS  PubMed  Google Scholar 

  60. Ivan M, Kondo K, Yang H et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science (New York, NY) 292:464–468

    Article  CAS  Google Scholar 

  61. Lu H, Samanta D, Xiang L et al (2015) Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype. Proc Natl Acad Sci U S A 112:E4600-4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mc S (2006) Coming up for air: HIF-1 and mitochondrial oxygen consumption. Cell Metab 3:150–151

    Article  Google Scholar 

  63. Naranjo-Suarez S, Carlson B, Tobe R et al (2013) Regulation of HIF-1α activity by overexpression of thioredoxin is independent of thioredoxin reductase status. Mol Cells 36:151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Welsh S, Bellamy W, Briehl M et al (2002) The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Can Res 62:5089–5095

    CAS  Google Scholar 

  65. Farrell M, Rogers L, Liu Y et al (2010) Thioredoxin-interacting protein inhibits hypoxia-inducible factor transcriptional activity. Free Radical Biol Med 49:1361–1367

    Article  CAS  Google Scholar 

  66. Zhou J, Eleni C, Spyrou G et al (2008) The mitochondrial thioredoxin system regulates nitric oxide-induced HIF-1alpha protein. Free Radical Biol Med 44:91–98

    Article  CAS  Google Scholar 

  67. Zhou J, Damdimopoulos AE, Spyrou G et al (2007) Thioredoxin 1 and thioredoxin 2 have opposed regulatory functions on hypoxia-inducible factor-1α. J Biol Chem 282:7482–7490

    Article  CAS  PubMed  Google Scholar 

  68. Wang W, Huang L, Hu Y et al (2020) Neuroprotective effects of notoginsenoside R1 by upregulating Trx-1 on acrylamide-induced neurotoxicity in PC12. Hum Exp Toxicol 39:797–807

    Article  CAS  PubMed  Google Scholar 

  69. Song W, Chang W-L, Shan D et al (2020) Intermittent hypoxia impairs trophoblast cell viability by triggering the endoplasmic reticulum stress pathway. Reprod Sci 27:477–487

    Article  CAS  PubMed  Google Scholar 

  70. Tang L, Ren X, Han Y et al (2020) Sulforaphane attenuates apoptosis of hippocampal neurons induced by high glucose via regulating endoplasmic reticulum. Neurochem Int 136:104728

    Article  CAS  PubMed  Google Scholar 

  71. Zhou X, Tang S, Hu K et al (2018) DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath Schlaf Atmung 22:853–863

    Article  PubMed  Google Scholar 

  72. Yang L, Guo N, Fan W et al (2020) Thioredoxin-1 blocks methamphetamine-induced injury in brain through inhibiting endoplasmic reticulum and mitochondria-mediated apoptosis in mice. Neurotoxicology 78:163–169

    Article  CAS  PubMed  Google Scholar 

  73. Mukherjee S, Lekli I, Ray D et al (2010) Comparison of the protective effects of steamed and cooked broccolis on ischaemia-reperfusion-induced cardiac injury. Br J Nutr 103:815–823

    Article  CAS  PubMed  Google Scholar 

  74. N A-K, F F, F A-S et al (2019) The thioredoxin system is regulated by the ASK-1/JNK/p38/Survivin pathway during germ cell Apoptosis. Molecules (Basel, Switzerland) 24

  75. Ishaq M, Kumar S, Varinli H et al (2014) Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell 25:1523–1531

    Article  PubMed  PubMed Central  Google Scholar 

  76. Takeda K, Matsuzawa A, Nishitoh H et al (2004) Involvement of ASK1 in Ca2+-induced p38 MAP kinase activation. EMBO Rep 5:161–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsuzawa A, Saegusa K, Noguchi T et al (2005) ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 6:587–592

    Article  CAS  PubMed  Google Scholar 

  78. Ren X, Lu H, Wang N et al (2017) Thioredoxin is implicated in the anti-apoptotic effects of grape seed proanthocyanidin extract during hyperglycemia. Mol Med Rep 16:7731–7737

    Article  CAS  PubMed  Google Scholar 

  79. Branco V, Coppo L, Solá S et al (2017) Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury. Redox Biol 13:278–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. M S, H N, M F et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

  81. Sheng L, Jiao B, Shao L et al (2013) Probucol inhibits hydrogen peroxide to induce apoptosis of vascular smooth muscle cells. Mol Med Rep 7:1185–1190

    Article  CAS  PubMed  Google Scholar 

  82. Al-Gayyar MMH, Abdelsaid MA, Matragoon S et al (2011) Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. Br J Pharmacol 164:170–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. HM E and NJ D (2004) Sleep. 4: Sleepiness, cognitive function, and quality of life in obstructive sleep apnoea/hypopnoea syndrome. Thorax 59:618–622

  84. WT M, MR B, MR B (2007) Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J 29:156–178

  85. Lavie L, Lavie P (2012) CrossTalk opposing view: Most cardiovascular diseases in sleep apnoea are not caused by sympathetic activation. The Journal of physiology 590:2817–2819; discussion 2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kohler M, Stradling JR (2012) CrossTalk proposal: Most of the cardiovascular consequences of OSA are due to increased sympathetic activity. J Physiol 590:2813–2815; discussion 2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We deeply appreciate Kiichi Hirota for guiding us in our writing process extensively.

Author information

Authors and Affiliations

Authors

Contributions

Ye Pan and You Lu: conceptualization, formal analysis, investigation, software, writing—original draft.

Jie-dong Zhou: formal analysis, investigation, methodology, writing—review & editing

Cui-xue Wang, Jin-quan Wang, Atsushi Fukunaga: methodology, writing—review & editing

Junji Yodoi: formal analysis, investigation, writing—review & editing

Hai Tian: data curation, formal analysis, investigation, validation, visualization, writing—review & editing

All authors have read and agreed to publish the final version of the manuscript.

Corresponding author

Correspondence to Hai Tian.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Lu, Y., Zhou, Jd. et al. Prospect of thioredoxin as a possibly effective tool to combat OSAHS. Sleep Breath 27, 421–429 (2023). https://doi.org/10.1007/s11325-022-02640-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-022-02640-z

Keywords

Navigation