Skip to main content
Log in

The emerging role of microRNAs in hypoxia-induced pulmonary hypertension

  • Basic Science • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

The aim of this review is to discuss hypoxia-induced pulmonary hypertension (PH) and the role of microRNAs (miRNAs).

Background

Acute global hypoxia causes pulmonary vasoconstriction and increased pulmonary arterial blood pressure. Chronic exposure to sustained or intermittent hypoxia as in high altitude residents, chronic obstructive lung disease and sleep-disordered breathing can lead to pulmonary hypertension (PH) and right ventricular dysfunction. The development of PH is a poor prognostic sign in these patients that affects both quality of life and mortality. The mechanism of PH due to hypoxia has not been fully established. However, its pathophenotype is similar to idiopathic pulmonary arterial hypertension in the form of vascular cell proliferation and aberrant vascular remodeling. MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate gene expression, therefore potentially regulating a host of cellular signaling pathways. Several miRNAs have been identified to be involved in hypoxia models of PH in animals, in patients with PH, congestive heart failure and myocardial infarction.

Results

MiRNAs have been mechanistically linked to the control of a wide range of cellular responses—hypoxia, TGF-β signaling and inflammatory pathways—known to influence normal developmental physiology as well as regulating pulmonary arterial smooth muscle cell and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of hypoxia and pulmonary arterial hypertension (PAH). The blood levels of these miRNAs correlate with disease severity and prognosis.

Conclusions

Research on the role of these potential biomarkers will provide insight into the pathogenesis of PH and right heart failure and opportunities in therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, et al. (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:D34–D41

    Article  PubMed  Google Scholar 

  2. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, et al. (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24S

    Article  CAS  PubMed  Google Scholar 

  3. Pietra GG, Capron F, Stewart S, Leone O, Humbert M, et al. (2004) Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 43:25S–32S

    Article  PubMed  Google Scholar 

  4. Hansdottir S, Groskreutz DJ, Gehlbach BK (2013) WHO’s in second?: a practical review of World Health Organization group 2 pulmonary hypertension. Chest 144:638–650

    Article  PubMed  PubMed Central  Google Scholar 

  5. Oudiz RJ (2007) Pulmonary hypertension associated with left-sided heart disease. Clin Chest Med 28: 233–241, x.

  6. Strange G, Playford D, Stewart S, Deague JA, Nelson H, et al. (2012) Pulmonary hypertension: prevalence and mortality in the Armadale echocardiography cohort. Heart 98:1805–1811

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weitzenblum E, Chaouat A, Canuet M, Kessler R (2009) Pulmonary hypertension in chronic obstructive pulmonary disease and interstitial lung diseases. Semin Respir Crit Care Med 30:458–470

    Article  PubMed  Google Scholar 

  8. Seeger W, Adir Y, Barbera JA, Champion H, Coghlan JG, et al. (2013) Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol 62:D109–D116

    Article  PubMed  Google Scholar 

  9. Franklin KA, Lindberg E (2015) Obstructive sleep apnea is a common disorder in the population-a review on the epidemiology of sleep apnea. J Thorac Dis 7:1311–1322

    PubMed  PubMed Central  Google Scholar 

  10. Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, et al. (2015) Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med 3:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alchanatis M, Tourkohoriti G, Kakouros S, Kosmas E, Podaras S, et al. (2001) Daytime pulmonary hypertension in patients with obstructive sleep apnea: the effect of continuous positive airway pressure on pulmonary hemodynamics. Respiration 68:566–572

    Article  CAS  PubMed  Google Scholar 

  12. Bady E, Achkar A, Pascal S, Orvoen-Frija E, Laaban JP (2000) Pulmonary arterial hypertension in patients with sleep apnoea syndrome. Thorax 55:934–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sajkov D, McEvoy RD (2009) Obstructive sleep apnea and pulmonary hypertension. Prog Cardiovasc Dis 51:363–370

    Article  PubMed  Google Scholar 

  14. Minai OA, Ricaurte B, Kaw R, Hammel J, Mansour M, et al. (2009) Frequency and impact of pulmonary hypertension in patients with obstructive sleep apnea syndrome. Am J Cardiol 104:1300–1306

    Article  PubMed  Google Scholar 

  15. Kauppert CA, Dvorak I, Kollert F, Heinemann F, Jorres RA, et al. (2013) Pulmonary hypertension in obesity-hypoventilation syndrome. Respir Med 107:2061–2070

    Article  PubMed  Google Scholar 

  16. Jilwan FN, Escourrou P, Garcia G, Jais X, Humbert M, et al. (2013) High occurrence of hypoxemic sleep respiratory disorders in precapillary pulmonary hypertension and mechanisms. Chest 143:47–55

    Article  PubMed  Google Scholar 

  17. Sajkov D, Wang T, Saunders NA, Bune AJ, McEvoy RD (2002) Continuous positive airway pressure treatment improves pulmonary hemodynamics in patients with obstructive sleep apnea. Am J Respir Crit Care Med 165:152–158

    Article  PubMed  Google Scholar 

  18. Arias MA, Garcia-Rio F, Alonso-Fernandez A, Martinez I, Villamor J (2006) Pulmonary hypertension in obstructive sleep apnoea: effects of continuous positive airway pressure: a randomized, controlled cross-over study. Eur Heart J 27:1106–1113

    Article  PubMed  Google Scholar 

  19. Wells JM, Washko GR, Han MK, Abbas N, Nath H, et al. (2012) Pulmonary arterial enlargement and acute exacerbations of COPD. N Engl J Med 367:913–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carlsen J, Hasseriis Andersen K, Boesgaard S, Iversen M, Steinbruchel D, et al. (2013) Pulmonary arterial lesions in explanted lungs after transplantation correlate with severity of pulmonary hypertension in chronic obstructive pulmonary disease. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation 32:347–354

    Article  Google Scholar 

  21. Sakao S, Voelkel NF, Tatsumi K (2014) The vascular bed in COPD: pulmonary hypertension and pulmonary vascular alterations. European respiratory review: an official journal of the European Respiratory Society 23:350–355

    Article  Google Scholar 

  22. Chaouat A, Naeije R, Weitzenblum E (2008) Pulmonary hypertension in COPD. The European respiratory journal 32:1371–1385

    Article  CAS  PubMed  Google Scholar 

  23. Bartsch P, Maggiorini M, Ritter M, Noti C, Vock P, et al. (1991) Prevention of high-altitude pulmonary edema by nifedipine. N Engl J Med 325:1284–1289

    Article  CAS  PubMed  Google Scholar 

  24. Enson Y, Giuntini C, Lewis ML, Morris TQ, Ferrer MI, et al. (1964) The influence of hydrogen ion concentration and hypoxia on the pulmonary circulation. J Clin Invest 43:1146–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bergofsky EH, Haas F, Porcelli R (1968) Determination of the sensitive vascular sites from which hypoxia and hypercapnia elicit rises in pulmonary arterial pressure. Fed Proc 27:1420–1425

    CAS  PubMed  Google Scholar 

  26. Preston IR (2007) Clinical perspective of hypoxia-mediated pulmonary hypertension. Antioxid Redox Signal 9:711–721

    Article  CAS  PubMed  Google Scholar 

  27. Magee F, Wright JL, Wiggs BR, Pare PD, Hogg JC (1988) Pulmonary vascular structure and function in chronic obstructive pulmonary disease. Thorax 43:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hale KA, Niewoehner DE, Cosio MG (1980) Morphologic changes in the muscular pulmonary arteries: relationship to cigarette smoking, airway disease, and emphysema. Am Rev Respir Dis 122:273–278

    CAS  PubMed  Google Scholar 

  29. Santos S, Peinado VI, Ramirez J, Melgosa T, Roca J, et al. (2002) Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur Respir J 19:632–638

    Article  CAS  PubMed  Google Scholar 

  30. Chaouat A, Savale L, Chouaid C, Tu L, Sztrymf B, et al. (2009) Role for interleukin-6 in COPD-related pulmonary hypertension. Chest 136:678–687

    Article  CAS  PubMed  Google Scholar 

  31. Scharf SM, Iqbal M, Keller C, Criner G, Lee S, et al. (2002) Hemodynamic characterization of patients with severe emphysema. Am J Respir Crit Care Med 166:314–322

    Article  PubMed  Google Scholar 

  32. Savai R, Al-Tamari HM, Sedding D, Kojonazarov B, Muecke C, et al. (2014) Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat Med 20:1289–1300

    Article  CAS  PubMed  Google Scholar 

  33. Shintani M, Yagi H, Nakayama T, Saji T, Matsuoka R (2009) A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J Med Genet 46:331–337

    Article  CAS  PubMed  Google Scholar 

  34. Pullamsetti SS, Berghausen EM, Dabral S, Tretyn A, Butrous E, et al. (2012) Role of Src tyrosine kinases in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol 32:1354–1365

    Article  CAS  PubMed  Google Scholar 

  35. Kholdani C, Fares WH, Mohsenin V (2015) Pulmonary hypertension in obstructive sleep apnea: is it clinically significant? A critical analysis of the association and pathophysiology. Pulm Circ 5:220–227

    Article  PubMed  PubMed Central  Google Scholar 

  36. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, et al. (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389:990–994

    Article  CAS  PubMed  Google Scholar 

  37. Caruso P, MacLean MR, Khanin R, McClure J, Soon E, et al. (2010) Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol 30:716–723

    Article  CAS  PubMed  Google Scholar 

  38. Zhou G, Chen T, Raj JU (2015) MicroRNAs in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 52:139–151

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  40. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, et al. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  41. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, et al. (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:1193–1197

    Article  CAS  PubMed  Google Scholar 

  42. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, et al. (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. White K, Loscalzo J, Chan SY (2012) Holding our breath: the emerging and anticipated roles of microRNA in pulmonary hypertension. Pulm Circ 2:278–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jafari B, Mohsenin V (2012) Activation of heme oxygenase and suppression of cGMP are associated with impaired endothelial function in obstructive sleep apnea with hypertension. Am J Hypertens 25:854–861

    Article  CAS  PubMed  Google Scholar 

  45. Jafari B, Mohsenin V (2013) Endothelial dysfunction and hypertension in obstructive sleep apnea - is it due to intermittent hypoxia? J Cardiovasc Dis Res 4:87–91

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jafari B, Elias JA, Mohsenin V (2014) Increased plasma YKL-40/chitinase-3-like-protein-1 is associated with endothelial dysfunction in obstructive sleep apnea. PLoS One 9:e98629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667

    Article  CAS  PubMed  Google Scholar 

  48. Gozal D, Kheirandish-Gozal L (2008) Cardiovascular morbidity in obstructive sleep apnea: oxidative stress, inflammation, and much more. Am J Respir Crit Care Med 177:369–375

    Article  CAS  PubMed  Google Scholar 

  49. Akbas F, Coskunpinar E, Aynaci E, Oltulu YM, Yildiz P (2012) Analysis of serum micro-RNAs as potential biomarker in chronic obstructive pulmonary disease. Exp Lung Res 38:286–294

    Article  CAS  PubMed  Google Scholar 

  50. Willis BC, Borok Z (2007) TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293:L525–L534

    Article  CAS  PubMed  Google Scholar 

  51. Oak SR, Murray L, Herath A, Sleeman M, Anderson I, et al. (2011) A micro RNA processing defect in rapidly progressing idiopathic pulmonary fibrosis. PLoS One 6:e21253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sessa R, Hata A (2013) Role of microRNAs in lung development and pulmonary diseases. Pulm Circ 3:315–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rupani H, Sanchez-Elsner T, Howarth P (2013) MicroRNAs and respiratory diseases. Eur Respir J 41:695–705

    Article  CAS  PubMed  Google Scholar 

  54. Chan SY, Loscalzo J (2008) Pathogenic mechanisms of pulmonary arterial hypertension. J Mol Cell Cardiol 44:14–30

    Article  CAS  PubMed  Google Scholar 

  55. Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, et al. (2012) Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 185:409–419

    Article  CAS  PubMed  Google Scholar 

  56. Parikh VN, Jin RC, Rabello S, Gulbahce N, White K, et al. (2012) MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation 125:1520–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X, et al. (2013) An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med 19:74–82

    Article  CAS  PubMed  Google Scholar 

  58. Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, et al. (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208:535–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L, et al. (2012) A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res 111:290–300

    Article  CAS  PubMed  Google Scholar 

  60. Meloche J, Le Guen M, Potus F, Vinck J, Ranchoux B, et al. (2015) miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol 309:C363–C372

    Article  CAS  PubMed  Google Scholar 

  61. Yang S, Banerjee S, Freitas A, Cui H, Xie N, et al. (2012) miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 302:L521–L529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bertero T, Lu Y, Annis S, Hale A, Bhat B, et al. (2014) Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J Clin Invest 124:3514–3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9:1072–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun X, Icli B, Wara AK, Belkin N, He S, et al. (2012) MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation. J Clin Invest 122:1973–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Archer SL, Weir EK, Wilkins MR (2010) Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121:2045–2066

    Article  PubMed  PubMed Central  Google Scholar 

  67. Maarman G, Lecour S, Butrous G, Thienemann F, Sliwa K (2013) A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet? Pulm Circ 3:739–756

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cowan KN, Jones PL, Rabinovitch M (2000) Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. J Clin Invest 105:21–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, et al. (2005) Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J 19:1178–1180

    CAS  PubMed  Google Scholar 

  70. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, et al. (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  CAS  PubMed  Google Scholar 

  71. Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, et al. (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A 104:11418–11423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S (2007) Pathology of pulmonary hypertension. Clin Chest Med 28(23–42):vii

    Google Scholar 

  73. Ryan J, Tivnan A, Fay J, Bryan K, Meehan M, et al. (2012) MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome. Br J Cancer 107:967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sacconi A, Biagioni F, Canu V, Mori F, Di Benedetto A, et al. (2012) miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death Dis 3: e423.

  75. Meloche J, Potus F, Vaillancourt M, Bourgeois A, Johnson I, et al. (2015) Bromodomain-containing protein 4: the epigenetic origin of pulmonary arterial hypertension. Circ Res 117:525–535

    Article  CAS  PubMed  Google Scholar 

  76. Sen A, Ren S, Lerchenmuller C, Sun J, Weiss N, et al. (2013) MicroRNA-138 regulates hypoxia-induced endothelial cell dysfunction by targeting S100 A1. PLoS One 8:e78684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shan F, Li J, Huang QY (2014) HIF-1 alpha-induced up-regulation of miR-9 contributes to phenotypic modulation in pulmonary artery smooth muscle cells during hypoxia. J Cell Physiol 229:1511–1520

    Article  CAS  PubMed  Google Scholar 

  78. Ciuclan L, Bonneau O, Hussey M, Duggan N, Holmes AM, et al. (2011) A novel murine model of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 184:1171–1182

    Article  CAS  PubMed  Google Scholar 

  79. Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, et al. (2009) Interleukin-6 overexpression induces pulmonary hypertension. Circ Res 104: 236–244, 228p following 244.

  80. Graham BB, Mentink-Kane MM, El-Haddad H, Purnell S, Zhang L, et al. (2010) Schistosomiasis-induced experimental pulmonary hypertension: role of interleukin-13 signaling. Am J Pathol 177:1549–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. West J, Fagan K, Steudel W, Fouty B, Lane K, et al. (2004) Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 94:1109–1114

    Article  CAS  PubMed  Google Scholar 

  82. Reddy VM, Meyrick B, Wong J, Khoor A, Liddicoat JR, et al. (1995) In utero placement of aortopulmonary shunts. A model of postnatal pulmonary hypertension with increased pulmonary blood flow in lambs. Circulation 92:606–613

    Article  CAS  PubMed  Google Scholar 

  83. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339:327–335

    Article  CAS  PubMed  Google Scholar 

  84. Chen T, Zhou G, Zhou Q, Tang H, Ibe JC, et al. (2015) Loss of microRNA-17 approximately 92 in smooth muscle cells attenuates experimental pulmonary hypertension via induction of PDZ and LIM domain 5. Am J Respir Crit Care Med 191:678–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McLendon JM, Joshi SR, Sparks J, Matar M, Fewell JG, et al. (2015) Lipid nanoparticle delivery of a microRNA-145 inhibitor improves experimental pulmonary hypertension. J Control Release 210:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, et al. (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299:L861–L871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cheng Y, Zhu P, Yang J, Liu X, Dong S, et al. (2010) Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 87:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schlosser K, Taha M, Deng Y, Jiang B, Stewart DJ (2015) Discordant regulation of microRNA between multiple experimental models and human pulmonary hypertension. Chest 148:481–490

    Article  PubMed  Google Scholar 

  90. Levin ER (1995) Endothelins. N Engl J Med 333:356–363

    Article  CAS  PubMed  Google Scholar 

  91. White K, Dempsie Y, Caruso P, Wallace E, McDonald RA, et al. (2014) Endothelial apoptosis in pulmonary hypertension is controlled by a microRNA/programmed cell death 4/caspase-3 axis. Hypertension 64:185–194

    Article  CAS  PubMed  Google Scholar 

  92. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  93. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  PubMed  Google Scholar 

  94. Jones CP, Rankin SM (2011) Bone marrow-derived stem cells and respiratory disease. Chest 140:205–211

    Article  CAS  PubMed  Google Scholar 

  95. Zhang HC, Liu XB, Huang S, Bi XY, Wang HX, et al. (2012) Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev 21:3289–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rochefort GY, Delorme B, Lopez A, Herault O, Bonnet P, et al. (2006) Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 24:2202–2208

    Article  CAS  PubMed  Google Scholar 

  97. Patel KM, Crisostomo P, Lahm T, Markel T, Herring C, et al. (2007) Mesenchymal stem cells attenuate hypoxic pulmonary vasoconstriction by a paracrine mechanism. J Surg Res 143:281–285

    Article  CAS  PubMed  Google Scholar 

  98. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, et al. (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    Article  PubMed  Google Scholar 

  99. Baber SR, Deng W, Master RG, Bunnell BA, Taylor BK, et al. (2007) Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Physiol Heart Circ Physiol 292:H1120–H1128

    Article  CAS  PubMed  Google Scholar 

  100. Kanki-Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, et al. (2006) Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 114:I181–I185

    PubMed  Google Scholar 

  101. Takemiya K, Kai H, Yasukawa H, Tahara N, Kato S, et al. (2010) Mesenchymal stem cell-based prostacyclin synthase gene therapy for pulmonary hypertension rats. Basic Res Cardiol 105:409–417

    Article  CAS  PubMed  Google Scholar 

  102. Liang OD, Mitsialis SA, Chang MS, Vergadi E, Lee C, et al. (2011) Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells 29:99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, et al. (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tetta C, Bruno S, Fonsato V, Deregibus MC, Camussi G (2011) The role of microvesicles in tissue repair. Organogenesis 7:105–115

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, et al. (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82:412–427

    Article  CAS  PubMed  Google Scholar 

  106. Dimmeler S, Zeiher AM (2010) Circulating microRNAs: novel biomarkers for cardiovascular diseases? Eur Heart J 31:2705–2707

    Article  PubMed  Google Scholar 

  107. Rhodes CJ, Wharton J, Boon RA, Roexe T, Tsang H, et al. (2013) Reduced microRNA-150 is associated with poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 187:294–302

    Article  CAS  PubMed  Google Scholar 

  108. D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, et al. (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31:2765–2773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, et al. (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106:1035–1039

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Mohsenin.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsenin, V. The emerging role of microRNAs in hypoxia-induced pulmonary hypertension. Sleep Breath 20, 1059–1067 (2016). https://doi.org/10.1007/s11325-016-1351-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-016-1351-y

Keywords

Navigation