Skip to main content

Advertisement

Log in

The role inflammatory response genes in obstructive sleep apnea syndrome: a review

  • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

Obstructive sleep apnea syndrome (OSAS) has a negative impact on health and behavior of millions of individuals worldwide. The pathogenesis of this disorder is a multifactorial process related to a variety of mechanisms, including selective activation of inflammatory response pathways. A number of inflammatory factors, such as IL-6, IL-8, and TNF-α, can be found in high concentrations in subjects with OSAS and may serve as biological markers of this disease. The concentration of these cytokines contributes to weight gain in patients with OSAS and can also modify the risk of obesity-related metabolic disorders, especially insulin resistance. Nevertheless, the mechanisms by which specific genes are associated with these processes are still poorly known. In addition to gene expression studies, investigations aiming at the identification of epigenetic factors associated with OSAS are still scarce in the literature. The documented data support the hypothesis that the molecular changes that mediate inflammatory response are important mechanisms in the pathogenesis of OSAS, sleepiness, insulin resistance, visceral obesity, and cardiovascular disease, perhaps by leading to a more severe OSAS. Often, systemic changes may not be detected in mild OSA; however, molecular changes, which are much more sensitive to the mechanisms of intermittent hypoxia and oxidative stress, may be present.

Purpose

This review aimed to show an updated view on the studies evaluating the genetic basis of inflammatory response in many aspects of OSAS and to highlight potential research areas not fully explored to date in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azagra-Calero E, Espinar-Escalona E, Barrera-Mora J-M, et al. (2012) Obstructive sleep apnea syndrome (OSAS). Review of the literature. Med Oral Patol Oral Cir Bucal 17:e925–e929

    Article  PubMed  PubMed Central  Google Scholar 

  2. Casale M, Pappacena M, Rinaldi V, et al. (2009) Obstructive sleep apnea syndrome: from phenotype to genetic basis. Curr Genomics 10:119–126. doi:10.2174/138920209787846998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grilo A, Ruiz-Granados ES, Moreno-Rey C, et al. (2013) Genetic analysis of candidate SNPs for metabolic syndrome in obstructive sleep apnea (OSA). Gene 521:150–154. doi:10.1016/j.gene.2013.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research (1999). The Report of an American Academy of Sleep Medicine Task Force. Sleep 22:667–689.

  5. Garvey JF, Taylor CT, McNicholas WT (2009) Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. Eur Respir J 33:1195–1205. doi:10.1183/09031936.00111208

    Article  CAS  PubMed  Google Scholar 

  6. De Carvalho TBO, Suman M, Molina FD, et al. (2013) Relationship of obstructive sleep apnea syndrome with the 5-HT2A receptor gene in Brazilian patients. Sleep Breath Schlaf Atm 17:57–62. doi:10.1007/s11325-012-0645-y

    Article  Google Scholar 

  7. Young T, Palta M, Dempsey J, et al. (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328:1230–1235. doi:10.1056/NEJM199304293281704

    Article  CAS  PubMed  Google Scholar 

  8. Peppard PE, Young T, Barnet JH, et al. (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177:1006–1014. doi:10.1093/aje/kws342

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tufik S, Santos-Silva R, Taddei JA, Bittencourt LRA (2010) Obstructive sleep apnea syndrome in the Sao Paulo Epidemiologic Sleep Study. Sleep Med 11:441–446. doi:10.1016/j.sleep.2009.10.005

    Article  PubMed  Google Scholar 

  10. Young T, Peppard PE, Gottlieb DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165:1217–1239

    Article  PubMed  Google Scholar 

  11. Jordan AS, McSharry DG, Malhotra A (2014) Adult obstructive sleep apnoea. Lancet 383:736–747. doi:10.1016/S0140-6736(13)60734-5

  12. Schwartz AR, Patil SP, Laffan AM, et al. (2008) Obesity and obstructive sleep apnea: pathogenic mechanisms and therapeutic approaches. Proc Am Thorac Soc 5:185–192. doi:10.1513/pats.200708-137MG

    Article  PubMed  PubMed Central  Google Scholar 

  13. Peppard PE, Young T, Palta M, et al. (2000) Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 284:3015–3021

    Article  CAS  PubMed  Google Scholar 

  14. Ronen O, Malhotra A, Pillar G (2007) Influence of gender and age on upper-airway length during development. Pediatrics 120:e1028–e1034. doi:10.1542/peds.2006-3433

    Article  PubMed  PubMed Central  Google Scholar 

  15. Whittle AT, Marshall I, Mortimore IL, et al. (1999) Neck soft tissue and fat distribution: comparison between normal men and women by magnetic resonance imaging. Thorax 54:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malhotra A, Huang Y, Fogel RB, et al. (2002) The male predisposition to pharyngeal collapse: importance of airway length. Am J Respir Crit Care Med 166:1388–1395. doi:10.1164/rccm.2112072

  17. Young T (2001) Menopause, hormone replacement therapy, and sleep-disordered breathing: are we ready for the heat? Am J Respir Crit Care Med 163:597–598. doi:10.1164/ajrccm.163.3.ed09-01a

    Article  CAS  PubMed  Google Scholar 

  18. McNicholas WT (2009) Obstructive sleep apnea and inflammation. Prog Cardiovasc Dis 51:392–399. doi:10.1016/j.pcad.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  19. Testelmans D, Tamisier R, Barone-Rochette G, et al. (2013) Profile of circulating cytokines: impact of OSA, obesity and acute cardiovascular events. Cytokine 62:210–216. doi:10.1016/j.cyto.2013.02.021

    Article  CAS  PubMed  Google Scholar 

  20. Ryan S, Taylor CT, McNicholas WT (2009) Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? Postgrad Med J 85:693–698. doi:10.1136/thx.2008.105577

    Article  CAS  PubMed  Google Scholar 

  21. Lam S-Y, Liu Y, Ng K-M, et al. (2012) Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways. Histochem Cell Biol 137:303–317. doi:10.1007/s00418-011-0900-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grieve DJ, Shah AM (2003) Oxidative stress in heart failure. More than just damage. Eur Heart J 24:2161–2163

    Article  PubMed  Google Scholar 

  23. Lavie L, Lavie P (2009) Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J 33:1467–1484. doi:10.1183/09031936.00086608

    Article  CAS  PubMed  Google Scholar 

  24. Pilkauskaite G, Miliauskas S, Sakalauskas R (2013) Reactive oxygen species production in peripheral blood neutrophils of obstructive sleep apnea patients. ScientificWorldJournal 2013:421763. doi:10.1155/2013/421763

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lavie L, Lavie P (2012) CrossTalk opposing view: most cardiovascular diseases in sleep apnoea are not caused by sympathetic activation. J Physiol 590:2817–2819. doi:10.1113/jphysiol.2012.233833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lui MM-S, Lam DC-L, Ip MS-M (2013) Significance of endothelial dysfunction in sleep-related breathing disorder. Respirol Carlton Vic 18:39–46. doi:10.1111/j.1440-1843.2012.02212.x

    Article  Google Scholar 

  27. Flora Filho R, Zilberstein B (2000) Óxido nítrico: o simples mensageiro percorrendo a complexidade. Metabolismo, síntese e funções. Rev Assoc Médica Bras 46:265–271. doi:10.1590/S0104-42302000000300012

    Article  CAS  Google Scholar 

  28. Lavie L (2015) Oxidative stress in obstructive sleep apnea and intermittent hypoxia—revisited—the bad ugly and good: implications to the heart and brain. Sleep Med Rev 20:27–45. doi:10.1016/j.smrv.2014.07.003

    Article  PubMed  Google Scholar 

  29. Hernández C, Abreu J, Abreu P, et al. (2006) Effects of nasal positive airway pressure treatment on oxidative stress in patients with sleep apnea-hypopnea syndrome. Arch Bronconeumol 42:125–129

    PubMed  Google Scholar 

  30. Casella Filho A, Araújo RG, Galvão TG, Chagas ACP (2005) Inflamação e Aterosclerose: Integração de Novas Teorias e Valorização dos Novos Marcadores. Rev Bras Cardiol Invasiva 11:14–19

    Google Scholar 

  31. Kang WS, Park HJ, Chung J-H, Kim JW (2013) REM sleep deprivation increases the expression of interleukin genes in mice hypothalamus. Neurosci Lett 556:73–78. doi:10.1016/j.neulet.2013.09.050

    Article  CAS  PubMed  Google Scholar 

  32. Krueger JM, Majde JA (2003) Humoral links between sleep and the immune system: research issues. Ann N Y Acad Sci 992:9–20

    Article  CAS  PubMed  Google Scholar 

  33. Yokoe T, Minoguchi K, Matsuo H, et al. (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107:1129–1134

    Article  CAS  PubMed  Google Scholar 

  34. Ohga E, Tomita T, Wada H, et al. (1985) (2003) Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J Appl Physiol Bethesda Md 94:179–184. doi:10.1152/japplphysiol.00177.2002

    Google Scholar 

  35. Ryan S, Taylor CT, McNicholas WT (2006) Predictors of elevated nuclear factor-kappaB-dependent genes in obstructive sleep apnea syndrome. Am J Respir Crit Care Med 174:824–830. doi:10.1164/rccm.200601-066OC

    Article  CAS  PubMed  Google Scholar 

  36. Schulz R, Hummel C, Heinemann S, et al. (2002) Serum levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea and severe nighttime hypoxia. Am J Respir Crit Care Med 165:67–70. doi:10.1164/ajrccm.165.1.2101062

    Article  PubMed  Google Scholar 

  37. Ip MS, Lam KS, Ho C, et al. (2000) Serum leptin and vascular risk factors in obstructive sleep apnea. Chest 118:580–586

    Article  CAS  PubMed  Google Scholar 

  38. Al Lawati N, Mulgrew A, Cheema R, et al. (2009) Pro-atherogenic cytokine profile of patients with suspected obstructive sleep apnea. Sleep Breath Schlaf Atm 13:391–395. doi:10.1007/s11325-009-0259-1

    Article  Google Scholar 

  39. Shamsuzzaman ASM, Winnicki M, Lanfranchi P, et al. (2002) Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105:2462–2464

    Article  CAS  PubMed  Google Scholar 

  40. Guven SF, Turkkani MH, Ciftci B, et al. (2012) The relationship between high-sensitivity C-reactive protein levels and the severity of obstructive sleep apnea. Sleep Breath Schlaf Atm 16:217–221. doi:10.1007/s11325-011-0492-2

    Article  Google Scholar 

  41. Quercioli A, Mach F, Montecucco F (2010) Inflammation accelerates atherosclerotic processes in obstructive sleep apnea syndrome (OSAS). Sleep Breath Schlaf Atm 14:261–269. doi:10.1007/s11325-010-0338-3

    Article  Google Scholar 

  42. Popko K, Gorska E, Potapinska O, et al. (2008) Frequency of distribution of inflammatory cytokines IL-1, IL-6 and TNF-alpha gene polymorphism in patients with obstructive sleep apnea. J Physiol Pharmacol Off J Pol Physiol Soc 59(Suppl 6):607–614

    Google Scholar 

  43. Semenza GL (1985) (2004) O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol Bethesda Md 96:1173–1177 discussion 1170–1172. doi:10.1152/japplphysiol.00770.2003

    Google Scholar 

  44. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667. doi:10.1161/CIRCULATIONAHA.105.556746

    Article  CAS  PubMed  Google Scholar 

  45. Baessler A, Nadeem R, Harvey M, et al. (2013) Treatment for sleep apnea by continuous positive airway pressure improves levels of inflammatory markers—a meta-analysis. J Inflamm Lond Engl 10:13. doi:10.1186/1476-9255-10-13

    Article  CAS  Google Scholar 

  46. Nadeem R, Molnar J, Madbouly EM, et al. (2013) Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 9:1003–1012. doi:10.5664/jcsm.3070

    Google Scholar 

  47. Lui MM, Lam JC, Mak HK-F, et al. (2009) C-reactive protein is associated with obstructive sleep apnea independent of visceral obesity. Chest 135:950–956. doi:10.1378/chest.08-1798

    Article  CAS  PubMed  Google Scholar 

  48. Punjabi NM, Beamer BA (2007) C-reactive protein is associated with sleep disordered breathing independent of adiposity. Sleep 30:29–34

    PubMed  Google Scholar 

  49. Guilleminault C, Kirisoglu C, Ohayon MM (2004) C-reactive protein and sleep-disordered breathing. Sleep 27:1507–1511

    PubMed  Google Scholar 

  50. Mills PJ, Natarajan L, von Känel R, et al. (2009) Diurnal variability of C-reactive protein in obstructive sleep apnea. Sleep Breath Schlaf Atm 13:415–420. doi:10.1007/s11325-009-0268-0

    Article  Google Scholar 

  51. Ishida K, Kato M, Kato Y, et al. (2009) Appropriate use of nasal continuous positive airway pressure decreases elevated C-reactive protein in patients with obstructive sleep apnea. Chest 136:125–129. doi:10.1378/chest.08-1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xie X, Pan L, Ren D, et al. (2013) Effects of continuous positive airway pressure therapy on systemic inflammation in obstructive sleep apnea: a meta-analysis. Sleep Med 14:1139–1150. doi:10.1016/j.sleep.2013.07.006

    Article  PubMed  Google Scholar 

  53. Guo Y, Pan L, Ren D, Xie X (2013) Impact of continuous positive airway pressure on C-reactive protein in patients with obstructive sleep apnea: a meta-analysis. Sleep Breath Schlaf Atm 17:495–503. doi:10.1007/s11325-012-0722-2

    Article  Google Scholar 

  54. Mermigkis C, Bouloukaki I, Mermigkis D, et al. (2012) CRP evolution pattern in CPAP-treated obstructive sleep apnea patients. Does gender play a role? Sleep Breath Schlaf Atm 16:813–819. doi:10.1007/s11325-011-0580-3

    Article  Google Scholar 

  55. Von Känel R, Natarajan L, Ancoli-Israel S, et al. (2013) Effect of continuous positive airway pressure on day/night rhythm of prothrombotic markers in obstructive sleep apnea. Sleep Med 14:58–65. doi:10.1016/j.sleep.2012.07.009

  56. Larkin EK, Patel SR, Goodloe RJ, et al. (2010) A candidate gene study of obstructive sleep apnea in European Americans and African Americans. Am J Respir Crit Care Med 182:947–953. doi:10.1164/rccm.201002-0192OC

    Article  PubMed  PubMed Central  Google Scholar 

  57. Petruco ACM, M da C B (2010) Aspectos genéticos da SAOS. J Bras Pneumol 36:13–16. doi:10.1590/S1806-37132010001400005

    Article  PubMed  Google Scholar 

  58. Zhang X, Liu R-Y, Lei Z, et al. (2009) Genetic variants in interleukin-6 modified risk of obstructive sleep apnea syndrome. Int J Mol Med 23:485–493

    Article  CAS  PubMed  Google Scholar 

  59. Jones J, Chen L-S, Baudhuin L, et al. (2009) Relationships between C-reactive protein concentration and genotype in healthy volunteers. Clin Chem Lab Med CCLM FESCC 47:20–25. doi:10.1515/CCLM.2009.005

    CAS  Google Scholar 

  60. Kaditis AG, Gozal D, Khalyfa A, et al. (2014) Variants in C-reactive protein and IL-6 genes and susceptibility to obstructive sleep apnea in children: a candidate-gene association study in European American and Southeast European populations. Sleep Med 15:228–235. doi:10.1016/j.sleep.2013.08.795

    Article  PubMed  PubMed Central  Google Scholar 

  61. Riha RL, Brander P, Vennelle M, et al. (2005) Tumour necrosis factor-alpha (-308) gene polymorphism in obstructive sleep apnoea-hypopnoea syndrome. Eur Respir J 26:673–678. doi:10.1183/09031936.05.00130804

    Article  CAS  PubMed  Google Scholar 

  62. Bhushan B, Guleria R, Misra A, et al. (2009) TNF-alpha gene polymorphism and TNF-alpha levels in obese Asian Indians with obstructive sleep apnea. Respir Med 103:386–392. doi:10.1016/j.rmed.2008.10.001

    Article  PubMed  Google Scholar 

  63. Wu Y, Cao C, Wu Y, et al. (2014) TNF-α-308G/A polymorphism contributes to obstructive sleep apnea syndrome risk: evidence based on 10 case-control studies. PLoS One 9:e106183. doi:10.1371/journal.pone.0106183

    Article  PubMed  PubMed Central  Google Scholar 

  64. Larkin EK, Patel SR, Zhu X, et al. (2010) Study of the relationship between the interleukin-6 gene and obstructive sleep apnea. Clin Transl Sci 3:337–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gozal D, Khalyfa A, Capdevila OS, et al. (2012) Cognitive function in prepubertal children with obstructive sleep apnea: a modifying role for NADPH oxidase p22 subunit gene polymorphisms? Antioxid Redox Signal 16:171–177. doi:10.1089/ars.2011.4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Piérola J, Alemany A, Yañez A, et al. (2011) NADPH oxidase p22phox polymorphisms and oxidative stress in patients with obstructive sleep apnoea. Respir Med 105:1748–1754. doi:10.1016/j.rmed.2011.08.006

    Article  PubMed  Google Scholar 

  67. Arnardottir ES, Mackiewicz M, Gislason T, et al. (2009) Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep 32:447–470

    PubMed  PubMed Central  Google Scholar 

  68. Greenberg H, Ye X, Wilson D, et al. (2006) Chronic intermittent hypoxia activates nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem Biophys Res Commun 343:591–596. doi:10.1016/j.bbrc.2006.03.015

    Article  CAS  PubMed  Google Scholar 

  69. Lavie L (2005) Sleep-disordered breathing and cerebrovascular disease: a mechanistic approach. Neurol Clin 23:1059–1075. doi:10.1016/j.ncl.2005.05.005

    Article  PubMed  Google Scholar 

  70. Lavie L (2003) Obstructive sleep apnoea syndrome—an oxidative stress disorder. Sleep Med Rev 7:35–51

    Article  PubMed  Google Scholar 

  71. Meier-Ewert HK, Ridker PM, Rifai N, et al. (2004) Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J Am Coll Cardiol 43:678–683. doi:10.1016/j.jacc.2003.07.050

    Article  CAS  PubMed  Google Scholar 

  72. Vgontzas AN, Zoumakis E, Bixler EO, et al. (2004) Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab 89:2119–2126. doi:10.1210/jc.2003-031562

    Article  CAS  PubMed  Google Scholar 

  73. Irwin MR, Wang M, Campomayor CO, et al. (2006) Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch Intern Med 166:1756–1762. doi:10.1001/archinte.166.16.1756

    Article  CAS  PubMed  Google Scholar 

  74. Clement K, Langin D (2007) Regulation of inflammation-related genes in human adipose tissue. J Intern Med 262:422–430. doi:10.1111/j.1365-2796.2007.01851.x

    Article  CAS  PubMed  Google Scholar 

  75. Taylor CT, Kent BD, Crinion SJ, et al. (2014) Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression. Biochem Biophys Res Commun 447:660–665. doi:10.1016/j.bbrc.2014.04.062

    Article  CAS  PubMed  Google Scholar 

  76. Kimoff RJ, Hamid Q, Divangahi M, et al. (2011) Increased upper airway cytokines and oxidative stress in severe obstructive sleep apnoea. Eur Respir J 38:89–97. doi:10.1183/09031936.00048610

    Article  CAS  PubMed  Google Scholar 

  77. Broytman O, Braun RK, Morgan BJ, et al. (2014) Effects of chronic intermittent hypoxia on allergen-induced airway inflammation in rats. Am J Respir Cell Mol Biol. doi:10.1165/rcmb.2014-0213OC

    Google Scholar 

  78. Perry JC, Guindalini C, Bittencourt L, et al. (2013) Whole blood hypoxia-related gene expression reveals novel pathways to obstructive sleep apnea in humans. Respir Physiol Neurobiol 189:649–654. doi:10.1016/j.resp.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  79. Liu Y, Patel S, Nibbe R, et al. (2011) Systems biology analyses of gene expression and genome wide association study data in obstructive sleep apnea. Pac Symp Biocomput Pac Symp Biocomput 14–25

  80. Gharib SA, Hayes AL, Rosen MJ, Patel SR (2013) A pathway-based analysis on the effects of obstructive sleep apnea in modulating visceral fat transcriptome. Sleep 36:23–30. doi:10.5665/sleep.2294

    PubMed  PubMed Central  Google Scholar 

  81. Kim J, Bhattacharjee R, Khalyfa A, et al. (2012) DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am J Respir Crit Care Med 185:330–338. doi:10.1164/rccm.201106-1026OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang J, Guo X, Shi Y, et al. (2014) Intermittent hypoxia with or without hypercapnia is associated with tumorigenesis by decreasing the expression of brain derived neurotrophic factor and miR-34a in rats. Chin Med J 127:43–47

    PubMed  Google Scholar 

  83. Liu C, Kelnar K, Liu B, et al. (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215. doi:10.1038/nm.2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiang P, Liu R, Zheng Y, et al. (2012) MiR-34a inhibits lipopolysaccharide-induced inflammatory response through targeting Notch1 in murine macrophages. Exp Cell Res 318:1175–1184. doi:10.1016/j.yexcr.2012.03.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Associação Fundo de Incentivo à Pesquisa (AFIP), Fundação de Amparo à Pesquisa do Estado de São Paulo, Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflict of interest

The authors declare that they have no competinginterests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego R. Mazzotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, F.F.F., Mazzotti, D.R., Tufik, S. et al. The role inflammatory response genes in obstructive sleep apnea syndrome: a review. Sleep Breath 20, 331–338 (2016). https://doi.org/10.1007/s11325-015-1226-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-015-1226-7

Keywords

Navigation