Skip to main content

Advertisement

Log in

An automated algorithm to identify and reject artefacts for quantitative EEG analysis during sleep in patients with sleep-disordered breathing

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Large quantities of neurophysiological electroencephalogram (EEG) data are routinely collected in the sleep laboratory. These are underutilised due to the burden of managing artefact contamination. The aim of this study was to develop a new tool for automated artefact rejection that facilitates subsequent quantitative analysis of sleep EEG data collected during routine overnight polysomnography (PSG) in subjects with and without sleep-disordered breathing (SDB).

Methods

We evaluated the accuracy of an automated algorithm to detect sleep EEG artefacts against artefacts manually scored by three experienced technologists (reference standard) in 40 PSGs. Spectral power was computed using artefact-free EEG data derived from (1) the reference standard, (2) the algorithm and (3) raw EEG without any prior artefact rejection.

Results

The algorithm showed a high level of accuracy of 94.3, 94.7 and 95.8 % for detecting artefacts during the entire PSG, NREM sleep and REM sleep, respectively. There was good to moderate sensitivity and excellent specificity of the algorithm detection capabilities during sleep. The EEG spectral power for the reference standard and algorithm was significantly lower than that of the raw, unprocessed EEG signal.

Conclusions

These preliminary findings support an automated way to process EEG artefacts during sleep, providing the opportunity to investigate EEG-based markers of neurobehavioural impairment in sleep disorders in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, Coleman J Jr, Friedman L, Hirshkowitz M, Kapen S, Kramer M, Lee-Chiong T, Loube DL, Owens J, Pancer JP, Wise M (2005) Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep 28(4):499–521

    PubMed  Google Scholar 

  2. Dijk DJ (2010) Slow-wave sleep deficiency and enhancement: implications for insomnia and its management. World J Biol Psychiatry 11(1):22–28

    Article  PubMed  Google Scholar 

  3. D'Rozario AL, Kim JW, Wong KKH, Bartlett DJ, Marshall NS, Dijk DJ, Robinson PA, Grunstein RR (2013) A new EEG biomarker of neurobehavioural impairment and sleepiness in sleep apnea patients and controls during extended wakefulness. Clin Neurophysiol 124(8):1605–1614

    Article  PubMed  Google Scholar 

  4. Al-Shawwa BA, Badi AN, Goldberg AN, Woodson BT (2008) Defining common outcome metrics used in obstructive sleep apnea. Sleep Med Rev 12(6):449–461

    Article  PubMed  Google Scholar 

  5. Quan SF, Chan CS, Dement WC, Gevins A, Goodwin JL, Gottlieb DJ, Green S, Guilleminault C, Hirshkowitz M, Hyde PR, Kay GG, Leary EB, Nichols DA, Schweitzer PK, Simon RD, Walsh JK, Kushida CA (2011) The association between obstructive sleep apnea and neurocognitive performance—the Apnea Positive Pressure Long-term Efficacy Study (APPLES). Sleep 34(3):303–314B

    PubMed Central  PubMed  Google Scholar 

  6. Morisson F, Lavigne G, Petit D, Nielsen T, Malo J, Montplaisir J (1998) Spectral analysis of wakefulness and REM sleep EEG in patients with sleep apnoea syndrome. Eur Respir J 11(5):1135–1140

    Article  CAS  PubMed  Google Scholar 

  7. Morisson F, Décary A, Petit D, Lavigne G, Malo J, Montplaisir J (2001) Daytime sleepiness and EEG spectral analysis in apneic patients before and after treatment with continuous positive airway pressure. Chest 119(1):45–52

    Article  CAS  PubMed  Google Scholar 

  8. Heinzer R, Gaudreau H, Décary A, Sforza E, Petit D, Morisson F, Montplaisir J (2001) Slow-wave activity in sleep apnea patients before and after continuous positive airway pressure treatment: contribution to daytime sleepiness. Chest 119(6):1807–1813

    Article  CAS  PubMed  Google Scholar 

  9. Saunamaki T, Jehkonen M, Huupponen E, Polo O, Himanen SL (2009) Visual dysfunction and computational sleep depth changes in obstructive sleep apnea syndrome. Clin EEG Neurosci 40(3):162–167

    Article  PubMed  Google Scholar 

  10. Anderer P, Roberts S, Schlögl A, Gruber G, Klösch G, Herrmann W, Rappelsberger P, Filz O, Barbanoj MJ, Dorffner G, Saletu B (1999) Artifact processing in computerized analysis of sleep EEG—a review. Neuropsychobiology 40(3):150–157

    Article  CAS  PubMed  Google Scholar 

  11. Penzel T, Hirshkowitz M, Harsh J, Chervin RD, Butkov N, Kryger M, Malow B, Vitiello MV, Silber MH, Kushida CA, Chesson AL Jr (2007) Digital analysis and technical specifications. J Clin Sleep Med 3(2):109–120

    PubMed  Google Scholar 

  12. Brunner DP, Vasko RC, Detka CS, Monahan JP, Reynolds Iii CF, Kupfer DJ (1996) Muscle artifacts in the sleep EEG: automated detection and effect on all-night EEC power spectra. J Sleep Res 5(3):155–164

    Article  CAS  PubMed  Google Scholar 

  13. Crespo-Garcia M, Atienza M, Cantero JL (2008) Muscle artifact removal from human sleep EEG by using independent component analysis. Ann Biomed Eng 36(3):467–475

    Article  PubMed  Google Scholar 

  14. Klekowicz H, Malinowska U, Piotrowska AJ, Wołyńczyk-Gmaj D, Niemcewicz S, Durka PJ (2009) On the robust parametric detection of EEG artifacts in polysomnographic recordings. Neuroinformatics 7(2):147–160

    Article  CAS  PubMed  Google Scholar 

  15. Ktonas PY, Osorio PL, Everett RL (1979) Automated detection of EEG artifacts during sleep: preprocessing for all-night spectral analysis. Electroencephalogr Clin Neurophysiol 46(4):382–388

    Article  CAS  PubMed  Google Scholar 

  16. Waterman D, Woestenburg JC, Elton M, Hofman W, Kok A (1992) Removal of ocular artifacts from the REM sleep EEG. Sleep 15(4):371–375

    CAS  PubMed  Google Scholar 

  17. Jasper HH (1958) Report of Committee on Methods of Clinical Examination in Electroencephalography. Electroencephalogr Clin Neurophysiol 10(2):370–375

    Article  Google Scholar 

  18. Rechtshaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages in human subjects. Brain Information Service/Brain Research Institute, University of California, Los Angeles

    Google Scholar 

  19. American Academy of Sleep Medicine Task Force (1999) Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep 22(5):667–689

    Google Scholar 

  20. Sleep Disorders Atlas Task Force of the American Sleep Disorders Association (1992) EEG arousals: scoring rules and examples: a preliminary report. Sleep 15(2):173–184

    Google Scholar 

  21. Kemp B, Varri A, Rosa AC, Nielsen KD, Gade J (1992) A simple format for exchange of digitized polygraphic recordings. Electroencephalogr Clin Neurophysiol 82(5):391–393

    Article  CAS  PubMed  Google Scholar 

  22. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C, 2nd edition. Cambridge University Press, Cambridge

    Google Scholar 

  23. Zima M, Tichavsky P, Paul K, Krajca V (2012) Robust removal of short-duration artifacts in long neonatal EEG recordings using wavelet-enhanced ICA and adaptive combining of tentative reconstructions. Physiol Meas 33(8):N39–N49

    Article  CAS  PubMed  Google Scholar 

  24. Durka PJ, Klekowicz H, Blinowska KJ, Szelenberger W, Niemcewicz S (2003) A simple system for detection of EEG artifacts in polysomnographic recordings. IEEE Trans Biomed Eng 50(4):526–528

    Article  CAS  PubMed  Google Scholar 

  25. Devuyst S, Dutoit T, Stenuit P, Kerkhofs M, Stanus E (2008) Removal of ECG artifacts from EEG using a modified independent component analysis approach. Conf Proc IEEE Eng Med Biol Soc 2008:5204–5207

    CAS  PubMed  Google Scholar 

  26. Chervin RD, Burns JW, Ruzicka DL (2005) Electroencephalographic changes during respiratory cycles predict sleepiness in sleep apnea. Am J Respir Crit Care Med 171(6):652–658

    Article  PubMed  Google Scholar 

  27. Klösch G, Kemp B, Penzel T, Schlögl A, Rappelsberger P, Trenker E, Gruber G, Zeitlhofer J, Saletu B, Herrmann WM, Himanen SL, Kunz D, Barbanoj MJ, Röschke J, Värri A, Dorffner G (2001) The SIESTA project polygraphic and clinical database. IEEE Eng Med Biol Mag 20(3):51–57

    Article  PubMed  Google Scholar 

  28. Värri A, Kemp B, Penzel T, Schlögl A (2001) Standards for biomedical signal databases. IEEE Eng Med Biol Mag 20(3):33–37

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

A.L.D. was supported by an Australian National Health and Medical Research Council (NHMRC) Dora Lush Priority Scholarship (633172) and CIRUS Scholarship. P.Y.L. was supported by a NHMRC Senior Research Fellowship (1025248). K.K.H.W. was supported by a RACP-CONROD Fellowship. R.K. was supported by a NHMRC Postgraduate Medical Scholarship (633161) and CIRUS Scholarship. R.R.G. was supported by a NHMRC Practitioner Fellowship (1022730). J.W.K. was supported by a CIRUS Fellowship.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela L. D’Rozario.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 215 kb)

ESM 2

(JPEG 770 kb)

ESM 3

(JPEG 927 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Rozario, A.L., Dungan, G.C., Banks, S. et al. An automated algorithm to identify and reject artefacts for quantitative EEG analysis during sleep in patients with sleep-disordered breathing. Sleep Breath 19, 607–615 (2015). https://doi.org/10.1007/s11325-014-1056-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-014-1056-z

Keywords

Navigation