Skip to main content

Advertisement

Log in

A Comparative Study of 18F-FAPI-42 and 18F-FDG PET/CT for Evaluating Acute Kidney Injury in Cancer Patients

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Compare the value of imaging using positron 18F-labeled fibroblast activation protein inhibitor-42 (18F-FAPI-42) and 18F-labeled deoxyglucose (18F-FDG) for assessment of AKI.

Procedures

This study analyzed cancer patients who received 18F-FAPI-42 and 18F-FDG PET/CT imaging. Eight patients had AKI with bilateral ureteral obstruction (BUO), eight had BUO (CKD1–2) with no acute kidney disease (AKD), and eight had no ureteral obstruction (UO) with normal renal function. The average standardized uptake value (SUVave) of the renal parenchyma (RP-SUVave), the blood pool SUVave (B- SUVave), SUVave in the highest region of the renal collective system (RCS-SUVave), and the highest serum creatinine level (top SCr) were recorded.

Results

The 18F-FAPI-42 and 18F-FDG results showed that radiotracer of renal parenchyma was more concentrated in the AKI group than in the other two groups, whereas the RP-SUVave from 18F-FAPI-42 was higher than that from 18F-FDG in the AKI group (all P < 0.05). 18F-FAPI-42 imaging in the AKI group showed uptake by the renal parenchyma with a diffuse increase, but very little radiotracer in the renal collecting system, similar to a “super kidney scan.” The renal parenchyma also had an increase of SUVave, with accumulation of radiotracer in the renal collecting system. AKI was more severe when a patient had a “super kidney scan” in both kidneys (P < 0.05). The B-SUVave level was higher in the AKI group than in the other two groups in 18F-FAPI-42 (both P < 0.05).

Conclusions

18F-FAPI-42 imaging had higher RP-SUVave than 18F-FDG imaging in cancer patients who had BUO with AKI. An increased renal parenchyma uptake in both kidneys and low radiotracer distribution in the collecting system suggest more severe AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the data is available.

Abbreviations

FAPI:

Fibroblast activation protein inhibitor

FDG:

Fluorodeoxyglucose

SUVave :

Average standardized uptake value

AKI:

Acute kidney injury

AKD:

Acute kidney disease

CKD:

Chronic kidney disease

ESRD:

End-stage renal disease

KRT:

Kidney replacement therapy

eGFR:

Estimated glomerular filtration rate

SCr:

Serum creatinine

CKD-EPI:

Chronic Kidney Disease Epidemiology Collaboration

99Tcm-DTPA:

99Tcm-Diathylenetriamine penta-acetic acid

RP-SUVave :

Renal parenchyma SUVave

RCS-SUVave :

Renal collecting system SUVave

B-SUVave :

Abdominal aorta blood pool SUVave

non-UO:

No ureteral obstruction

UO:

Ureteral obstruction

UUO:

Unilateral ureteral obstruction

BUO:

Bilateral ureteral obstruction

References

  1. Joslin J, Wilson H, Zubli D et al (2015) Recognition and management of acute kidney injury in hospitalised patients can be partially improved with the use of a care bundle. Clin Med 15(5):431–436

    Article  Google Scholar 

  2. Sawhney S, Marks A, Fluck N et al (2017) Intermediate and long-term outcomes of survivors of acute kidney injury episodes: a large population-based cohort study. Am J Kidney Dis 69(1):18–28

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mehta RL, Cerdá J, Burdmann EA et al (2015) International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385(9987):2616–2643

    Article  PubMed  Google Scholar 

  4. Hatakeyama Y, Horino T, Nagata K et al (2018) Transition from acute kidney injury to chronic kidney disease: a single-centre cohort study. Clin Exp Nephrol 22(6):1281–1293

    Article  CAS  PubMed  Google Scholar 

  5. Wang F, Ding J (2021) Pediatric acute kidney injury to the subsequent CKD transition. Kidney Dis Basel 7(1):10–13

    Article  PubMed  Google Scholar 

  6. Lameire NH, Levin A, Kellum JA et al (2021) Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int 100(3):516–526

    Article  PubMed  Google Scholar 

  7. Sigurjonsdottir VK, Chaturvedi S, Mammen C et al (2018) Pediatric acute kidney injury and the subsequent risk for chronic kidney disease: is there cause for alarm? Pediatr Nephrol 33(11):2047–2055

    Article  PubMed  Google Scholar 

  8. Yang YR, Chen SJ, Yen PY et al (2021) Hydronephrosis in patients with cervical cancer is an indicator of poor outcome: a nationwide population-based retrospective cohort study. Medicine 100(6):e24182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tong G, Chen B, Zhang M et al (2022) Treatment efficacy and prognosis analysis in locally advanced or metastatic colorectal cancer patients with hydronephrosis. Mol Clin Oncol 16(6):106

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hu K, Li J, Wang L et al (2022) Preclinical evaluation and pilot clinical study of [(18)F]AlF-labeled FAPI-tracer for PET imaging of cancer associated fibroblasts. Acta Pharm Sin B 12(2):867–875

    Article  CAS  PubMed  Google Scholar 

  11. Hu K, Wang L, Wu H et al (2021) [(18)F] FAPI-42 PET imaging in cancer patients: optimal acquisition time, biodistribution, and comparison with [(68)Ga]Ga-FAPI-04. Eur J Nucl Med Mol I 49(8):2833–2843

    Article  Google Scholar 

  12. Kellum JA, Lameire N (2013) Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care 17(1):204

    Article  PubMed  PubMed Central  Google Scholar 

  13. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  PubMed  PubMed Central  Google Scholar 

  14. Andrassy KM (2013) Comments on ‘KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease.’ Kidney Int 84(3):622–623

    Article  CAS  PubMed  Google Scholar 

  15. Yang L (2019) How acute kidney injury contributes to renal fibrosis. Adv Exp Med Biol 1165:117–142

    Article  CAS  PubMed  Google Scholar 

  16. Liu C, Yan S, Wang Y et al (2021) Drug-induced hospital-acquired acute kidney injury in China: a multicenter cross-sectional survey. Kidney Dis Basel 7(2):143–155

    Article  PubMed  Google Scholar 

  17. Chi XH, Li GP, Wang QS et al (2017) CKD-EPI creatinine-cystatin C glomerular filtration rate estimation equation seems more suitable for Chinese patients with chronic kidney disease than other equations. BMC Nephrol 18(1):226

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kashani K, Rosner MH, Ostermann M (2020) Creatinine: from physiology to clinical application. Eur J Intern Med 72:9–14

    Article  CAS  PubMed  Google Scholar 

  19. Katagiri D, Wang F, Gore JC et al (2021) Clinical and experimental approaches for imaging of acute kidney injury. Clin Exp Nephrol 25(7):685–699

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kidera E, Koyasu S, Hayakawa N et al (2022) Association between diffuse renal uptake of (18)F-FDG and acute kidney injury. Ann Nucl Med 36(4):351–359

    Article  CAS  PubMed  Google Scholar 

  21. Lovinfosse P, Weekers L, Pottel H et al (2021) [(18)F]FDG PET/CT imaging disproves renal allograft acute rejection in kidney transplant recipients with acute kidney dysfunction: a validation cohort. Eur J Nucl Med Mol I 49(1):331–335

    Article  CAS  Google Scholar 

  22. Wahl RL, Dilsizian V, Palestro CJ (2021) At Last, (18)F-FDG for inflammation and infection! J Nucl Med 62(8):1048–1049

    Article  PubMed  Google Scholar 

  23. Martínez-Klimova E, Aparicio-Trejo OE, Tapia E et al (2019) Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules 9(4):141

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sato Y, Yanagita M (2018) Immune cells and inflammation in AKI to CKD progression. Am J Physiol Renal 315(6):F1501–F1512

    Article  CAS  Google Scholar 

  25. Black LM, Lever JM, Agarwal A (2019) Renal inflammation and fibrosis: a double-edged sword. J Histochem Cytochem 67(9):663–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee KW, Kim TM, Kim KS et al (2018) Renal ischemia-reperfusion injury in a diabetic monkey model and therapeutic testing of human bone marrow-derived mesenchymal stem cells. J Diabetes Res 2018:5182606

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pure E, Blomberg R (2018) Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 37(32):4343–4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rohrich M, Naumann P, Giesel FL et al (2020) Impact of (68)Ga-FAPI-PET/CT imaging on the therapeutic management of primary and recurrent pancreatic ductal adenocarcinomas. J Nucl Med 62(6):779–786

    Article  PubMed  Google Scholar 

  29. Gu B, Luo Z, He X et al (2020) 68Ga-FAPI and 18F-FDG PET/CT images in a patient with extrapulmonary tuberculosis mimicking malignant tumor. Clin Nucl Med 45(11):865–867

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kratochwil C, Flechsig P, Lindner T et al (2019) (68)Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med 60(6):801–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou Y, Yang X, Liu H et al (2021) Value of [(68)Ga]Ga-FAPI-04 imaging in the diagnosis of renal fibrosis. Eur J Nucl Med Mol I 48(11):3493–3501

    Article  CAS  Google Scholar 

  32. Conen P, Pennetta F, Dendl K, et al. [(68) Ga]Ga-FAPI uptake correlates with the state of chronic kidney disease. Eur J Nucl Med Mol I 2022:Online ahead of print.

  33. Zhou D, Fu H, Liu S et al (2019) Early activation of fibroblasts is required for kidney repair and regeneration after injury. FASEB J 33(11):12576–12587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Venkatachalam MA, Weinberg JM, Kriz W et al (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 26(8):1765–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Chiara L, Lugli G, Villa G et al (2022) Molecular mechanisms and biomarkers associated with chemotherapy-induced AKI. Int J Mol Sci 23(5):2638

    Article  PubMed  PubMed Central  Google Scholar 

  36. Takaori K, Nakamura J, Yamamoto S et al (2016) Severity and frequency of proximal tubule injury determines renal prognosis. J Am Soc Nephrol 27(8):2393–2406

    Article  PubMed  Google Scholar 

  37. L T, SJ J, J P, et al (2021) The expression and significance of fibroblast activating protein in renal tissue of rats with renal interstitial fibrosis. J Guangxi Med Univ 38(5):985–988

  38. Schmidkonz C, Rauber S, Atzinger A et al (2020) Disentangling inflammatory from fibrotic disease activity by fibroblast activation protein imaging. Ann Rheum Dis 79(11):1485–1491

    Article  CAS  PubMed  Google Scholar 

  39. Ronco C, Bellomo R, Kellum JA (2019) Acute kidney injury. Lancet 394(10212):1949–1964

    Article  CAS  PubMed  Google Scholar 

  40. Yang Q, Wang C, Gao C et al (2019) Does baseline renal function always decrease after unilateral ureteral severe obstruction? -experimental validation and novel findings by Tc-99m diethylene triamine pentaacetate acid (DTPA) dynamic renal scintigraphy. Quant Image Med Surg 9(8):1451–1465

    Article  Google Scholar 

  41. Bainbridge TW, Dunshee DR, Kljavin NM et al (2017) Selective homogeneous assay for circulating endopeptidase fibroblast activation protein (FAP). Sci Rer UK 7(1):12524

    Google Scholar 

Download references

Funding

National Natural Science Foundation of China (91949121), Guangdong Basic and Applied Basic Research Foundation (2214050005512), Nanfang Hospital Talent Introduction Fundation of Southern Medical University (No.123456), and Medical Products Administration of Guangdong Province (2021ZDB02; Drug Supervision and Administration Division1 (2022)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganghua Tang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, X., Yang, X., Li, G. et al. A Comparative Study of 18F-FAPI-42 and 18F-FDG PET/CT for Evaluating Acute Kidney Injury in Cancer Patients. Mol Imaging Biol 25, 671–680 (2023). https://doi.org/10.1007/s11307-023-01820-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-023-01820-x

Key words

Navigation