Skip to main content

Advertisement

Log in

The Detection of Divalent Iron and Reactive Oxygen Species During Ferroptosis with the Use of a Dual-Reaction Turn-On Fluorescent Probe

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Ferroptosis, a programmed cell death modality, is an iron-dependent, non-apoptosis pathway that is characterized by the upregulation of divalent iron and reactive oxygen species (ROS) levels. However, the sensitive and rapid detection to track changes in ferroptosis is challenging, partially due to the lack of methods for monitoring the Fe(II) accumulation and ROS generation.

Procedures

Herein, we reported a dual-reaction fluorescent probe DR-1 with turn-on response, which realized the simultaneous visualizing of Fe(II) and ROS with a single probe. The structure of fluorescence quenching group and turn-on fluorophore constitute a double switch for DR-1, which increases its specificity and stability.

Results

During ferroptotic cell death, the upregulation of ROS levels led to the cleavage of quenching group of DR-1, and the aggregation of Fe(II) resulting in fluorescence recovery.

Conclusions

Overall, this study provides a new dual-reaction probe that shows the great potential to explore the mechanism of ferroptosis in vitro and in vivo by fluorescence imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gaschler MM, Andia AA, Liu HR, Csuka JM, Hurlocker B, Vaiana CA, Heindel DW, Zuckerman DS, Bos PH, Reznik E, Ye LF, Tyurina YY, Lin AJ, Shchepinov MS, Chan AY, Peguero-Pereira E, Fomich MA, Daniels JD, Bekish AV, Shmanai VV, Kagan VE, Mahal LK, Woerpel KA, Stockwell BR (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14(5):507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, Schreiber SL, McCormick F, McManus MT (2017) Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551(7679):247–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med 152:175–185

    Article  CAS  PubMed  Google Scholar 

  6. Jiang L, Kon N, Li TY, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR, Chattopadhyay S, Tamayo P, Yang WS, Rees MG, Chen SX, Boskovic ZV, Javaid S, Huang C, Wu XY, Tseng YY, Roider EM, Gao D, Cleary JM, Wolpin BM, Mesirov JP, Haber DA, Engelman JA, Boehm JS, Kotz JD, Hon CS, Chen Y, Hahn WC, Levesque MP, Doench JG, Berens ME, Shamji AF, Clemons PA, Stockwell BR, Schreiber SL (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547(7664):453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu YY, Jiang L, Wang H, Shen Z, Cheng Q, Zhang P, Wang JM, Wu Q, Fang XX, Duan LY, Wang SF, Wang K, An P, Shao T, Chung RT, Zheng SS, Min JX, Wang FD (2020) Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood 136(6):726–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE, Noel K, Jiang XJ, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang DL, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: a regulated cell death nexus linking metabolism. Redox Biology, and Disease, Cell 171(2):273–285

    CAS  PubMed  Google Scholar 

  10. Liang C, Zhang XL, Yang MS, Dong XC (2019) Recent progress in ferroptosis inducers for cancer therapy. Adv Mater 31(51)

  11. Chen Y, Liu Y, Lan T, Qin W, Zhu YT, Qin K, Gao JJ, Wang HB, Hou XM, Chen N, Angeli JPF, Conrad M, Wang C (2018) Quantitative profiling of protein carbonylations in ferroptosis by an aniline-derived probe. J Am Chem Soc 140(13):4712–4720

    Article  CAS  PubMed  Google Scholar 

  12. Wang KN, Liu LY, Mao D, Xu SD, Tan CP, Cao Q, Mao ZW, Liu B (2021) A polarity-sensitive ratiometric fluorescence probe for monitoring changes in lipid droplets and nucleus during ferroptosis. Angew Chem Int Edit 60(27):15095–15100

  13. Li HY, Shi W, Li XH, Hu YM, Fang Y, Ma HM (2019) Ferroptosis accompanied by (OH)-O-center dot generation and cytoplasmic viscosity increase revealed via dual-functional fluorescence probe. J Am Chem Soc 141(45):18301–18307

    Article  CAS  PubMed  Google Scholar 

  14. Gao MH, Monian P, Quadri N, Ramasamy R, Jiang XJ (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T (2017) Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol 403:143–170

    CAS  Google Scholar 

  16. Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Bio 21(7):363–383

    Article  CAS  Google Scholar 

  17. Takashi Y, Tomita K, Kuwahara Y, Roudkenar MH, Roushandeh AM, Igarashi K, Nagasawa T, Nishitani Y, Sato T (2020) Mitochondrial dysfunction promotes aquaporin expression that controls hydrogen peroxide permeability and ferroptosis. Free Radic Biol Med 161:60–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li H, Shi W, Li X, Hu Y, Fang Y, Ma H (2019) Ferroptosis accompanied by (*)OH generation and cytoplasmic viscosity increase revealed via dual-functional fluorescence probe. J Am Chem Soc 141(45):18301–18307

    Article  CAS  PubMed  Google Scholar 

  19. Hou W, Xie YC, Song XX, Sun XF, Lotze MT, Zeh HJ, Kang R, Tang DL (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8):1425–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen X, Yu CH, Kang R, Kroemer G, Tang DL (2021) Cellular degradation systems in ferroptosis. Cell Death Differ 28(4):1135–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Angeli JPF, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Radmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Forster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O’Donnell VB, Kagan VE, Schick JA, Conrad M (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180-U120

    Article  PubMed Central  Google Scholar 

  22. Wang YQ, Chang SY, Wu Q, Gou YJ, Jia LP, Cui YM, Yu P, Shi ZH, Wu WS, Gao GF, Chang YZ (2017) The protective role of mitochondrial ferritin on erastin-induced ferroptosis. Am J Hematol 92(8):E459–E459

    Google Scholar 

  23. Toyokuni S, Yanatori I, Kong YY, Zheng H, Motooka Y, Jiang L (2020) Ferroptosis at the crossroads of infection, aging and cancer. Cancer Sci 111(8):2665–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hirayama T (2019) Fluorescent probes for the detection of catalytic Fe(II) ion. Free Radical Bio Med 133:38–45

    Article  CAS  Google Scholar 

  25. Dikalov SI, Harrison DG (2014) Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Sign 20(2):372–382

    Article  CAS  Google Scholar 

  26. Aron AT, Loehr MO, Bogena J, Chang CJ (2016) An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells. J Am Chem Soc 138(43):14338–14346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou J, Ma HM (2016) Design principles of spectroscopic probes for biological applications (vol 7, pg 6309, 2016). Chem Sci 7(10):6575–6575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miao QQ, Yeo DC, Wiraja C, Zhang JJ, Ning XY, Xu CJ, Pu KY (2018) Near-infrared fluorescent molecular probe for sensitive imaging of keloid. Angew Chem Int Edit 57(5):1256–1260

    Article  CAS  Google Scholar 

  29. Wang M-Y, Yuan A, Zhang J, Xiang Y, Yuan Z (2020) Functional near-infrared spectroscopy can detect low-frequency hemodynamic oscillations in the prefrontal cortex during steady-state visual evoked potential-inducing periodic facial expression stimuli presentation. Vis Comput Ind Biomed Art 3(1):28. https://doi.org/10.1186/s42492-020-00065-7

  30. Hirayama T, Okuda K, Nagasawa H (2013) A highly selective turn-on fluorescent probe for iron(II) to visualize labile iron in living cells. Chem Sci 4(3):1250–1256

    Article  CAS  Google Scholar 

  31. Mai TT, Hamai A, Hienzsch A, Caneque T, Muller S, Wicinski J, Cabaud O, Leroy C, David A, Acevedo V, Ryo A, Ginestier C, Birnbaum D, Charafe-Jauffret E, Codogno P, Mehrpour M, Rodriguez R (2017) Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 9(10):1025–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang C, Zhang X, Yang M, Dong X (2019) Recent progress in ferroptosis inducers for cancer therapy. Adv Mater 31(51):e1904197

    Article  PubMed  Google Scholar 

  33. Aron AT, Reeves AG, Chang CJ (2018) Activity-based sensing fluorescent probes for iron in biological systems. Curr Opin Chem Biol 43:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hirayama T, Tsuboi H, Niwa M, Miki A, Kadota S, Ikeshita Y, Okuda K, Nagasawa H (2017) A universal fluorogenic switch for Fe(ii) ion based on N-oxide chemistry permits the visualization of intracellular redox equilibrium shift towards labile iron in hypoxic tumor cells. Chem Sci 8(7):4858–4866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Li C, Zhang X, Kang X, Li Y, Zhang W, Chen Y, Liu Y, Wang W, Ge M, Du L (2021) Exposure to PM2.5 aggravates Parkinson’s disease via inhibition of autophagy and mitophagy pathway. Toxicology 456:152770

    Article  CAS  PubMed  Google Scholar 

  36. Gupta MK, Lee SH, Crowder SW, Wang X, Hofmeister LH, Nelson CE, Bellan LM, Duvall CL, Sung HJ (2015) Oligoproline-derived nanocarrier for dual stimuli-responsive gene delivery. J Mater Chem B 3(36):7271–7280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawasaki R, Tsuchiya K, Kodama Y, Numata K (2020) Development of reactive oxygen species-triggered degradable nanoparticles using oligoproline-containing peptides. Biomacromol 21(10):4116–4122

    Article  CAS  Google Scholar 

  38. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25(3–4):207–218

    Article  CAS  PubMed  Google Scholar 

  39. Mandal S, Mann G, Satish G, Brik A (2021) Enhanced live-cell delivery of synthetic proteins assisted by cell-penetrating peptides fused to DABCYL. Angew Chem Int Ed Engl 60(13):7333–7343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duelli DM, Lazebnik YA (2000) Primary cells suppress oncogene-dependent apoptosis. Nat Cell Biol 2(11):859–862

    Article  CAS  PubMed  Google Scholar 

  41. Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV (2016) iron and cancer: recent insights. Ann Ny Acad Sci 1368:149–161

    Article  CAS  PubMed  Google Scholar 

  42. Tian RL, Abarientos A, Hong JS, Hashemi SH, Yan R, Drager N, Leng K, Nalls MA, Singleton AB, Xu K, Faghri F, Kampmann M (2021) Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci 24(7):1020–1034

  43. Hirayama T, Miki A, Nagasawa H (2019) Organelle-specific analysis of labile Fe(ii) during ferroptosis by using a cocktail of various colour organelle-targeted fluorescent probes. Metallomics 11(1):111–117

    Article  CAS  PubMed  Google Scholar 

  44. Hirayama T, Inden M, Tsuboi H, Niwa M, Uchida Y, Naka Y, Hozumi I, Nagasawa H (2019) A Golgi-targeting fluorescent probe for labile Fe(ii) to reveal an abnormal cellular iron distribution induced by dysfunction of VPS35. Chem Sci 10(5):1514–1521

    Article  CAS  PubMed  Google Scholar 

  45. Roverato ND, Sailer C, Catone N, Aichem A, Stengel F, Groettrup M (2021) Parkin is an E3 ligase for the ubiquitin-like modifier FAT10, which inhibits Parkin activation and mitophagy. Cell Rep 34(11):108857

    Article  CAS  PubMed  Google Scholar 

  46. Yao J, Cheng Y, Zhou M, Zhao S, Lin S, Wang X, Wu J, Li S, Wei H (2018) ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem Sci 9(11):2927–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the instrumental technical support of the Multimodal Biomedical Imaging Experimental Platform, Institute of Automation, Chinese Academy of Sciences.

The authors would also like to thank Dr. Fudi Wang (Zhejiang University School of Medicine, China) for his critical review of the manuscript.

Funding

This work was supported in part by the National Key Research and Development Program of China under Grants 2017YFA0700401, 2016YFC0103803, and 2017YFA0205200), National Natural Science Foundation of China (grants nos. 62027901, 81227901, 81930053, 81827808, 81527805, 81971198, and 81671851), China Postdoctoral Science Foundation (grant nos. 2020M680301 and 2019TQ0018), Chinese Academy of Sciences Youth Innovation Promotion Association (grant no. 2018167), Chinese Academy of Sciences Key Technology Talent Program, and Project of High-Level Talents Team Introduction in Zhuhai City (Zhuhai HLHPTP201703), The Fundamental Research Funds for the Central Universities (grant no. JKF-YG-22-B005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Hui, Bing Zhou or Jie Tian.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 4110 KB)

Supplementary file2 (AVI 8056 KB)

Supplementary file3 (AVI 391 KB)

Supplementary file4 (DOCX 1.38 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, C., Zhuo, J. et al. The Detection of Divalent Iron and Reactive Oxygen Species During Ferroptosis with the Use of a Dual-Reaction Turn-On Fluorescent Probe. Mol Imaging Biol 25, 423–434 (2023). https://doi.org/10.1007/s11307-022-01774-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-022-01774-6

Key words

Navigation