Skip to main content

Advertisement

Log in

Role of Radiomics-Based Baseline PET/CT Imaging in Lymphoma: Diagnosis, Prognosis, and Response Assessment

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Radiomic analysis provides information on the underlying tumour heterogeneity in lymphoma, reflecting the real-time evolution of malignancy. 2-Deoxy-2-[18F] fluoro-D-glucose positron emission tomography ([18F] FDG PET/CT) imaging is recommended before, during, and at the end of treatment for almost all lymphoma patients. This methodology offers high specificity and sensitivity, which can aid in accurate staging and assist in prompt treatment. Pretreatment [18F] FDG PET/CT-based radiomics facilitates improved diagnostic ability, guides individual treatment regimens, and boosts outcome prognosis based on heterogeneity as well as the biological, pathological, and metabolic status of the lymphoma. This technique has attracted considerable attention given its numerous applications in medicine. In the current review, we will briefly describe the basic radiomics workflow and types of radiomic features. Details of current applications of baseline [18F] FDG PET/CT-based radiomics in lymphoma will be discussed, such as differential diagnosis from other primary malignancies, diagnosis of bone marrow involvement, and response and prognostic prediction. We will also describe how this technique provides a unique noninvasive platform to assess tumour heterogeneity. Newly emerging PET radiotracers and multimodality technology will improve diagnostic specificity and further clarify tumor biology and even genetic variations in lymphoma, potentially promoting the development of precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jaffe ES, Campo E (2017) Introduction and overview of the classification of lymphoid neoplasms. In: Swerdlow SH (ed) WHO classification of tumours of haematopoietic and lymphoid tissues, Edn. Revised 4th. International Agency for Research on Cancer, Lyon, France, p190–198

  2. de Leval L, Jaffe ES (2020) Lymphoma classification. Cancer J 26(3):176–185

    Article  PubMed  Google Scholar 

  3. Armitage JO, Gascoyne RD, Lunning MA et al (2017) Non-Hodgkin lymphoma. Lancet 390(10091):298–310

    Article  PubMed  Google Scholar 

  4. Connors JM, Cozen W, Steidl C et al (2020) Hodgkin lymphoma. Nat Rev Dis Primers 6(1):61

    Article  PubMed  Google Scholar 

  5. Kaseb H, Babiker HM (2021) Hodgkin Lymphoma. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from:https://www.ncbi.nalm.nih.gov/books/NBK499969/

  6. Sapkota S, Shaikh H. (2021) Non-Hodgkin Lymphoma. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559328/?report=classic

  7. Miller KD, Fidler-Benaoudia M, Keegan TH et al (2020) Cancer statistics for adolescents and young adults, 2020. CA Cancer J Clin 70(6):443–459

    Article  PubMed  Google Scholar 

  8. Siegel RL, Miller KD, Fuchs HE et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  9. Eichenauer DA, Engert A (2020) How I treat nodular lymphocyte-predominant Hodgkin lymphoma. Blood 136(26):2987–2993

    Article  CAS  PubMed  Google Scholar 

  10. Wang L, Li LR, Young KH (2020) New agents and regimens for diffuse large B cell lymphoma. J Hematol Oncol 13(1):175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cook LB, Phillips AA (2021) How I treat adult T-cell leukemia/lymphoma. Blood 137(4):459–470

    Article  CAS  PubMed  Google Scholar 

  12. Freeman CL, Savage KJ, Villa DR et al (2021) Long-term results of PET-guided radiation in patients with advanced-stage diffuse large B-cell lymphoma treated with R-CHOP. Blood 137(7):929–938

    Article  CAS  PubMed  Google Scholar 

  13. Wright CM, Koroulakis AI, Baron JA, et al (2021) Palliative radiotherapy for diffuse large B-cell lymphoma. Clin Lymphoma Myeloma Leuk 21(10):650–658

  14. Bunse M, Pfeilschifter J, Bluhm J et al (2021) CXCR5 CAR-T cells simultaneously target B cell non-Hodgkin’s lymphoma and tumor-supportive follicular T helper cells. Nat Commun 12(1):240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ong SY, de Mel S, Grigoropoulos NF et al (2021) High-dose methotrexate is effective for prevention of isolated CNS relapse in diffuse large B cell lymphoma. Blood Cancer J 11(8):143

    Article  PubMed  PubMed Central  Google Scholar 

  16. Epperla N, Badar T, Szabo A et al (2019) Postrelapse survival in diffuse large B-cell lymphoma after therapy failure following autologous transplantation. Blood Adv 3(11):1661–1669

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shah NN, Ahn KW, Litovich C et al (2021) Is autologous transplant in relapsed DLBCL patients achieving only a PET+ PR appropriate in the CAR T-cell era? Blood 137(10):1416–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zaucha JM, Chauvie S, Zaucha R et al (2019) The role of PET/CT in the modern treatment of Hodgkin lymphoma. Cancer Treat Rev 77:44–56

    Article  PubMed  Google Scholar 

  19. Hayden AR, Tonseth P, Lee DG et al (2020) Outcome of primary mediastinal large B-cell lymphoma using R-CHOP: impact of a PET-adapted approach. Blood 136(24):2803–2811

    Article  CAS  PubMed  Google Scholar 

  20. Mesguich C, Bouabdallah K, Bordenave L et al (2020) Interim PET assessment of advanced Hodgkin lymphoma: is It sufficient? J Nucl Med 61(11):1694–1695

    Article  PubMed  Google Scholar 

  21. Barrington SF, Trotman J (2021) The role of PET in the first-line treatment of the most common subtypes of non-Hodgkin lymphoma. Lancet Haematol 8(1):e80–e93

    Article  PubMed  Google Scholar 

  22. Frood R, Burton C, Tsoumpas C, et al. (2021) Baseline PET/CT imaging parameters for prediction of treatment outcome in Hodgkin and diffuse large B cell lymphoma: a systematic review. Eur J Nucl Med Mol Imaging 48(10):3198–3220

  23. Jacene HA (2021) FDG PET for assessment of autologous stem cell transplantation. Semin Nucl Med 51(4):380–391

    Article  PubMed  Google Scholar 

  24. Park YJ, Hyun SH, Moon SH et al (2021) Role in staging and prognostic value of pretherapeutic F-18 FDG PET/CT in patients with gastric MALT lymphoma without high-grade transformation. Sci Rep 11(1):9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trotman J, Barrington SF (2021) The role of PET in first-line treatment of Hodgkin lymphoma. Lancet Haematol 8(1):e67–e79

    Article  PubMed  Google Scholar 

  26. Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11(8):2785–2808

    Article  CAS  PubMed  Google Scholar 

  27. Chen S, Wang S, He K et al (2018) PET/CT predicts bone marrow involvement in paediatric non-Hodgkin lymphoma and may preclude the need for bone marrow biopsy in selected patients. Eur Radiol 28(7):2942–2950

    Article  PubMed  Google Scholar 

  28. Pietrzak A, Marszalek A, Kunikowska J et al (2021) Detection of clinically silent brain lesions in [18F]FDG PET/CT study in oncological patients: analysis of over 10,000 studies. Sci Rep 11(1):18293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abe Y, Kitadate A, Usui Y et al (2019) Diagnostic and prognostic value of using 18F-FDG PET/CT for the evaluation of bone marrow involvement in peripheral T-cell lymphoma. Clin Nucl Med 44(5):e336–e341

    Article  PubMed  Google Scholar 

  30. Nakajima R, Moskowitz AJ, Michaud L et al (2020) Baseline FDG-PET/CT detects bone marrow involvement in follicular lymphoma and provides relevant prognostic information. Blood Adv 4(8):1812–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Damlaj M, Ghazi S, Syed G et al (2017) Pre-autologous transplantation PET/CT using Deauville criteria is an independent predictor of progression in relapsed refractory classical Hodgkin lymphoma. Bone Marrow Transplant 52(9):1342–1344

    Article  CAS  PubMed  Google Scholar 

  32. Song GY, Yoon SE, Kim SJ et al (2020) Prognostic significance of interim PET/CT response for the treatment of advanced-stage marginal zone lymphoma in the post-rituximab era. Sci Rep 10(1):11649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cottereau AS, Meignan M, Nioche C et al (2021) Risk stratification in diffuse large B-cell lymphoma using lesion dissemination and metabolic tumor burden calculated from baseline PET/CT(dagger). Ann Oncol 32(3):404–411

    Article  PubMed  Google Scholar 

  34. Cottereau AS, Nioche C, Dirand AS et al (2020) (18)F-FDG PET dissemination features in diffuse large B-cell lymphoma Are predictive of outcome. J Nucl Med 61(1):40–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lee JW, Lee SM (2018) Radiomics in oncological PET/CT: clinical applications. Nucl Med Mol Imaging 52(3):170–189

    Article  PubMed  Google Scholar 

  36. Ha S, Choi H, Paeng JC et al (2019) Radiomics in oncological PET/CT: a methodological overview. Nucl Med Mol Imaging 53(1):14–29

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yu J, Deng Y, Liu T et al (2020) Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics. Nat Commun 11(1):4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chetan MR, Gleeson FV (2021) Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives. Eur Radiol 31(2):1049–1058

    Article  PubMed  Google Scholar 

  39. Mu W, Jiang L, Zhang J et al (2020) Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun 11(1):5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bang M, Eom J, An C et al (2021) An interpretable multiparametric radiomics model for the diagnosis of schizophrenia using magnetic resonance imaging of the corpus callosum. Transl Psychiatry 11(1):462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan J, Zhang B, Zhang S et al (2021) Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients. NPJ Precis Oncol 5(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang N, Liu F, Li C et al (2021) Diagnostic classification of coronavirus disease 2019 (COVID-19) and other pneumonias using radiomics features in CT chest images. Sci Rep 11(1):17885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu Y, Mao Y, Chen J et al (2021) Radiomics-based model for predicting early recurrence of intrahepatic mass-forming cholangiocarcinoma after curative tumor resection. Sci Rep 11(1):18347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mayerhoefer ME, Materka A, Langs G et al (2020) Introduction to radiomics. J Nucl Med 61(4):488–495

    Article  CAS  PubMed  Google Scholar 

  45. Mayerhoefer ME, Riedl CC, Kumar A et al (2019) Radiomic features of glucose metabolism enable prediction of outcome in mantle cell lymphoma. Eur J Nucl Med Mol Imaging 46(13):2760–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mayerhoefer ME, Umutlu L, Schoder H (2021) Functional imaging using radiomic features in assessment of lymphoma. Methods 188:105–111

    Article  CAS  PubMed  Google Scholar 

  47. Reynes-Llompart G, Sabate-Llobera A, Llinares-Tello E et al (2019) Image quality evaluation in a modern PET system: impact of new reconstructions methods and a radiomics approach. Sci Rep 9(1):10640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Tian M, He X, Jin C et al (2021) Transpathology: molecular imaging-based pathology. Eur J Nucl Med Mol Imaging 48(8):2338–2350

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jin X, Wei M, Wang S, et al. (2021) Detecting fibroblast activation proteins in lymphoma using (68)Ga-FAPI PET/CT. J Nucl Med. https://doi.org/10.2967/jnumed.121.262134

  50. Tsuchiya J, Yoneyama T, Ohtake M et al (2020) Redox reaction and clinical outcome of primary diffuse large B-cell lymphoma of the central nervous system: prognostic role of metabolic and textural parameters of 62Cu-diacetyl-bis (N4-methylthiosemicarbazone) PET/computed tomography in a small patient cohort. Nucl Med Commun 41(6):567–574

    Article  CAS  PubMed  Google Scholar 

  51. Wang G, Jin X, Zhu H et al (2021) (68)Ga-NOTA-FAPI-04 PET/CT in a patient with primary gastric diffuse large B cell lymphoma: comparisons with [(18)F] FDG PET/CT. Eur J Nucl Med Mol Imaging 48(2):647–648

    Article  PubMed  Google Scholar 

  52. Zanoni L, Broccoli A, Lambertini A et al (2019) Role of 18F-FLT PET/CT in suspected recurrent or residual lymphoma: final results of a pilot prospective trial. Eur J Nucl Med Mol Imaging 46(8):1661–1671

    Article  CAS  PubMed  Google Scholar 

  53. Singh G, Manjila S, Sakla N et al (2021) Radiomics and radiogenomics in gliomas: a contemporary update. Br J Cancer 125(5):641–657

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zwanenburg A, Vallieres M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338

    Article  PubMed  Google Scholar 

  55. Zhu S, Xu H, Shen C et al (2021) Differential diagnostic ability of 18F-FDG PET/CT radiomics features between renal cell carcinoma and renal lymphoma. Q J Nucl Med Mol Imaging 65(1):72–78

    Article  PubMed  Google Scholar 

  56. Tomita H, Yamashiro T, Iida G et al (2021) Unenhanced CT texture analysis with machine learning for differentiating between nasopharyngeal cancer and nasopharyngeal malignant lymphoma. Nagoya J Med Sci 83(1):135–149

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mitamura K, Norikane T, Yamamoto Y et al (2021) Texture indices of 18F-FDG PET/CT for differentiating squamous cell carcinoma and Non-Hodgkin’s lymphoma of the oropharynx. Acta Med Okayama 75(3):351–356

    CAS  PubMed  Google Scholar 

  58. Sun YW, Ji CF, Wang H et al (2020) Differentiating gastric cancer and gastric lymphoma using texture analysis (TA) of positron emission tomography (PET). Chin Med J (Engl) 134(4):439–447

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ou X, Zhang J, Wang J et al (2020) Radiomics based on (18) F-FDG PET/CT could differentiate breast carcinoma from breast lymphoma using machine-learning approach: a preliminary study. Cancer Med 9(2):496–506

    Article  PubMed  Google Scholar 

  60. Xu H, Guo W, Cui X et al (2019) Three-dimensional texture analysis based on PET/CT images to distinguish hepatocellular carcinoma and hepatic lymphoma. Front Oncol 9:844

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ou X, Wang J, Zhou R et al (2019) Ability of (18)F-FDG PET/CT Radiomic features to distinguish breast carcinoma from breast lymphoma. Contrast media Mol imaging 2019:4507694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kong Z, Jiang C, Zhu R et al (2019) (18)F-FDG-PET-based radiomics features to distinguish primary central nervous system lymphoma from glioblastoma. Neuroimage Clin 23:101912

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tatsumi M, Isohashi K, Matsunaga K et al (2019) Volumetric and texture analysis on FDG PET in evaluating and predicting treatment response and recurrence after chemotherapy in follicular lymphoma. Int J Clin Oncol 24(10):1292–1300

    Article  PubMed  Google Scholar 

  64. Coskun N, Okudan B, Uncu D, et al. (2021) Baseline 18F-FDG PET textural features as predictors of response to chemotherapy in diffuse large B-cell lymphoma. Nucl Med Commun 42(11):1227–1232

  65. Sun Y, Qiao X, Jiang C et al (2020) Texture analysis improves the value of pretreatment (18)F-FDG PET/CT in predicting interim response of primary gastrointestinal diffuse large B-cell lymphoma. Contrast Media Mol Imaging 2020:2981585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Aide N, Talbot M, Fruchart C et al (2018) Diagnostic and prognostic value of baseline FDG PET/CT skeletal textural features in diffuse large B cell lymphoma. Eur J Nucl Med Mol Imaging 45(5):699–711

    Article  PubMed  Google Scholar 

  67. Mayerhoefer ME, Riedl CC, Kumar A, et al. (2020) [18F]FDG-PET/CT Radiomics for prediction of bone marrow involvement in mantle cell lymphoma: a retrospective study in 97 patients. Cancers (Basel), 12(5):1138

  68. Parvez A, Tau N, Hussey D et al (2018) (18)F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin’s lymphoma as predictors of treatment outcome and survival. Ann Nucl Med 32(6):410–416

    Article  CAS  PubMed  Google Scholar 

  69. Lue KH, Wu YF, Liu SH et al (2020) Intratumor heterogeneity assessed by (18)F-FDG PET/CT predicts treatment response and survival outcomes in patients with Hodgkin lymphoma. Acad Radiol 27(8):e183–e192

    Article  PubMed  Google Scholar 

  70. Ko KY, Liu CJ, Ko CL et al (2016) Intratumoral heterogeneity of pretreatment 18F-FDG PET images predict disease progression in patients with nasal type extranodal natural killer/T-cell lymphoma. Clin Nucl Med 41(12):922–926

    Article  PubMed  Google Scholar 

  71. Lue KH, Wu YF, Liu SH et al (2019) Prognostic value of pretreatment radiomic features of 18F-FDG PET in patients with Hodgkin lymphoma. Clin Nucl Med 44(10):e559–e565

    Article  PubMed  Google Scholar 

  72. Wang M, Xu H, Xiao L et al (2019) Prognostic value of functional parameters of (18)F-FDG-PET images in patients with primary renal/adrenal lymphoma. Contrast Media Mol Imaging 2019:2641627

    PubMed  PubMed Central  Google Scholar 

  73. Zhou Y, Ma XL, Pu LT et al (2019) Prediction of overall survival and progression-free survival by the (18)F-FDG PET/CT radiomic features in patients with primary gastric diffuse large B-cell lymphoma. Contrast Media Mol Imaging 2019:5963607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Aide N, Fruchart C, Nganoa C et al (2020) Baseline (18)F-FDG PET radiomic features as predictors of 2-year event-free survival in diffuse large B cell lymphomas treated with immunochemotherapy. Eur Radiol 30(8):4623–4632

    Article  PubMed  Google Scholar 

  75. Lue KH, Wu YF, Lin HH, et al. (2020) Prognostic value of baseline radiomic features of (18)F-FDG PET in patients with diffuse large B-cell lymphoma. Diagnostics (Basel) 11(1):36

  76. Wang H, Zhao S, Li L et al (2020) Development and validation of an (18)F-FDG PET radiomic model for prognosis prediction in patients with nasal-type extranodal natural killer/T cell lymphoma. Eur Radiol 30(10):5578–5587

    Article  CAS  PubMed  Google Scholar 

  77. Li H, Shao G, Zhang Y et al (2021) Nomograms based on SUVmax of (18)F-FDG PET/CT and clinical parameters for predicting progression-free and overall survival in patients with newly diagnosed extranodal natural killer/T-cell lymphoma. Cancer Imaging 21(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mena E, Lindenberg ML, Turkbey BI et al (2014) A pilot study of the value of 18F-fluoro-deoxy-thymidine PET/CT in predicting viable lymphoma in residual 18F-FDG avid masses after completion of therapy. Clin Nucl Med 39(10):874–881

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is sponsored by grants from the National Key R&D Program of China (2021YFE0108300) and National Natural Science Foundation of China (82030049 and 32027802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Tian or Hong Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Li, A., Ji, Z. et al. Role of Radiomics-Based Baseline PET/CT Imaging in Lymphoma: Diagnosis, Prognosis, and Response Assessment. Mol Imaging Biol 24, 537–549 (2022). https://doi.org/10.1007/s11307-022-01703-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-022-01703-7

Keywords

Navigation