Skip to main content

Advertisement

Log in

Cross-Species Physiological Assessment of Brain Estrogen Receptor Expression Using 18F-FES and 18F-4FMFES PET Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

A retrospective analysis was performed of preclinical and clinical data acquired during the evaluation of the estrogen receptor (ER) PET tracer 4-fluoro-11β-methoxy-16α-[18F]-fluoroestradiol (4FMFES) and its comparison with 16α-[18F]-fluoroestradiol (FES) in mice, rats, and humans with a focus on the brain uptake.

Procedures

Breast cancer tumor-bearing female BALB/c mice from a previous study and female Sprague-Dawley rats (control and ovariectomized) were imaged by 4FMFES or FES-PET imaging. Immediately after, low-dose CT was performed in the same bed position. Semi-quantitative analysis was conducted to extract %ID/g data. Small cohorts of mice and rats were imaged with 4FMFES in an ultra-high-resolution small animal PET scanner prototype (LabPET II). Rat brains were dissected and imaged separately with both PET and autoradiography. In parallel, 31 breast cancer patients were enrolled in a clinical phase II study to compare 4FMFES with FES for oncological assessment. Since the head was included in the field of view, brain uptake of discernable foci was measured and reported as SUVMax.

Results

Regardless of the species studied, 4FMFES and FES uptake were relatively uniform in most regions of the brain, except for bilateral foci at the base of the skull, at the midsection of the brain. Anatomical localization of the PET signal using CT image fusion indicates that the signal origins from the pituitary in all studied species. 4FMFES yielded lower pituitary uptake than FES in patients, but an inverse trend was observed in rodents. 4FMFES pituitary contrast was higher than FES in all assessed groups. High-resolution small animal imaging of the brain of rats and mice revealed a supplemental signal anterior to the pituitary, which is likely to be the medial preoptic area. Dissection data further confirmed those findings and revealed additional signals corresponding to the arcuate and ventromedial nuclei, along with the medial and cortical amygdala.

Conclusion

4FMFES allowed visualization of ER expression in the pituitary in humans and two different rodent species with better contrast than FES. Improvement in clinical spatial resolution might allow visualization and analysis of other ER-rich brain areas in humans. Further work is now possible to link 4FMFES pituitary uptake to cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Muramatsu M, Inoue S (2000) Estrogen receptors: how do they control reproductive and nonreproductive functions? Biochem Biophys Res Commun 270:1–10

    Article  CAS  PubMed  Google Scholar 

  2. Shupnik MA (2002) Oestrogen receptors, receptor variants, and oestrogen actions in the hypothalamic-pituitary axis. J Neuroendocrinol 14:85–94

    Article  CAS  PubMed  Google Scholar 

  3. Snoeren EM, Antonio-Cabrera E, Spiteri T et al (2015) Role of oestrogen α receptors in sociosexual behaviour in female rats housed in a seminatural environment. J Neuroendocrinol 27(11):803–818

    Article  CAS  PubMed  Google Scholar 

  4. Balzer BW, Duke SA, Hawke CI, Steinbeck KS (2015) The effects of estradiol on mood and behavior in human female adolescents: a systematic review. Eur J Pediatr 174(3):289–298

    Article  CAS  PubMed  Google Scholar 

  5. Mott NN, Pak TR (2013) Estrogen signaling and the aging brain: context-dependent considerations for postmenopausal hormone therapy. ISRN Endocrinol 2013:814690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. McCarrey AC, Resnick SM (2015) Postmenopausal hormone therapy and cognition. Horm Behav 74:167–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matyi JM, Rattinger GB, Schwartz S, Buhusi M, Tschanz JT (2019) Lifetime estrogen exposure and cognition in late life: the Cache County study. Menopause 26(12):1366–1374

    Article  PubMed  PubMed Central  Google Scholar 

  8. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn C (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. JAMA 278:1349–1356

    Article  CAS  PubMed  Google Scholar 

  9. Brinton RD, Yao J, Yin F, Mack WJ, Cadenas E (2015) Perimenopause as a neurological transition state. Nat Rev Endocrinol 11:393–405

    Article  CAS  PubMed  Google Scholar 

  10. Rocca WA, Grossardt BR, Shuster LT (2014) Oophorectomy, estrogen, and dementia: a 2014 update. Mol Cell Endocrinol 389:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Espeland MA, Shumaker SA, Leng I, Manson JE, Brown CM, LeBlanc E, Vaughan L, Robinson J, Rapp SR, Goveas JS, Wactawski-Wende J, Stefanick ML, Li W, Resnick SM, WHIMSY Study Group (2013) Long-term effects on cognitive function of postmenopausal hormone therapy prescribed to women aged 50 to 55 years. JAMA Intern Med 173(15):1429–1436

    Article  PubMed  Google Scholar 

  12. Wharton W, Gleason CE, Dowling NM, Carlsson CM, Brinton EA, Santoro MN, Neal-Perry G, Taylor H, Naftolin F, Lobo RA, Merriam G, Manson JAE, Cedars MI, Miller VM, Black DM, Budoff M, Hodis HN, Harman SM, Asthana S (2014) The KEEPS-cognitive and affective study: baseline associations between vascular risk factors and cognition. J Alzheimers Dis 40(2):331–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Humphreys GI, Ziegler YS, Nardulli AM (2014) 17β-estradiol modulates gene expression in the female mouse cerebral cortex. PLoS One 9(11):e111975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mahfouz A, Lelieveldt BP, Grefhorst A et al (2016) Genome-wide coexpression of steroid receptors in the mouse brain: identifying signaling pathways and functionally coordinated regions. Proc Natl Acad Sci U S A 113(10):2738–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shughrue PJ, Lane MV, Merchenthaler I (1997) Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol 388(4):507–525

    Article  CAS  PubMed  Google Scholar 

  16. Mitra SW, Hoskin E, Yudkovitz J, Pear L, Wilkinson HA, Hayashi S, Pfaff DW, Ogawa S, Rohrer SP, Schaeffer JM, McEwen BS, Alves SE (2003) Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 144(5):2055–2067

    Article  CAS  PubMed  Google Scholar 

  17. Merchenthaler I, Lane MV, Numan S, Dellovade TL (2004) Distribution of estrogen receptor alpha and beta in the mouse central nervous system: in vivo autoradiographic and immunocytochemical analyses. J Comp Neurol 473(2):270–291

    Article  CAS  PubMed  Google Scholar 

  18. Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA, Welch MJ (1984) Preparation of four fluorine- 18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med 25(11):1212–1221

    CAS  PubMed  Google Scholar 

  19. Seimbille Y, Rousseau J, Bénard F, Morin C, Ali H, Avvakumov G, Hammond GL, van Lier JE (2002) 18F-labeled difluoroestradiols: preparation and preclinical evaluation as estrogen receptor-binding radiopharmaceuticals. Steroids 67(9):765–775

    Article  CAS  PubMed  Google Scholar 

  20. Fowler AM, Chan SR, Sharp TL, Fettig NM, Zhou D, Dence CS, Carlson KE, Jeyakumar M, Katzenellenbogen JA, Schreiber RD, Welch MJ (2012) Small-animal PET of steroid hormone receptors predicts tumor response to endocrine therapy using a preclinical model of breast cancer. J Nucl Med 53(7):1119–1126

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Ayres KL, Goldman DA, Dickler MN, Bardia A, Mayer IA, Winer E, Fredrickson J, Arteaga CL, Baselga J, Manning HC, Mahmood U, Ulaner GA (2017) 18F-Fluoroestradiol PET/CT measurement of estrogen receptor suppression during a phase I trial of the novel estrogen receptor-targeted therapeutic GDC-0810: using an imaging biomarker to guide drug dosage in subsequent trials. Clin Cancer Res 23(12):3053–3060

    Article  CAS  PubMed  Google Scholar 

  22. Chae SY, Ahn SH, Kim SB, Han S, Lee SH, Oh SJ, Lee SJ, Kim HJ, Ko BS, Lee JW, Son BH, Kim J, Ahn JH, Jung KH, Kim JE, Kim SY, Choi WJ, Shin HJ, Gong G, Lee HS, Lee JB, Moon DH (2019) Diagnostic accuracy and safety of 16α-[18F]fluoro-17β-oestradiol PET-CT for the assessment of oestrogen receptor status in recurrent or metastatic lesions in patients with breast cancer: a prospective cohort study. Lancet Oncol 20(4):546–555

    Article  CAS  PubMed  Google Scholar 

  23. Pareto D, Alvarado M, Hanrahan SM, Biegon A (2004) In vivo occupancy of female rat brain estrogen receptors by 17beta-estradiol and tamoxifen. Neuroimage 23(3):1161–1167

    Article  CAS  PubMed  Google Scholar 

  24. Khayum MA, de Vries EF, Glaudemans AW, Dierckx RA, Doorduin J (2014) In vivo imaging of brain estrogen receptors in rats: a 16α-18F-fluoro-17β-estradiol PET study. J Nucl Med 55(3):481–487

    Article  CAS  PubMed  Google Scholar 

  25. Moresco RM, Casati R, Lucignani G, Carpinelli A, Schmidt K, Todde S, Colombo F, Fazio F (1995) Systemic and cerebral kinetics of 16 alpha [18F]fluoro-17 beta-estradiol: a ligand for the in vivo assessment of estrogen receptor binding parameters. J Cereb Blood Flow Metab 15(2):301–311

    Article  CAS  PubMed  Google Scholar 

  26. Paquette M, Phoenix S, Ouellet R, Langlois R, van Lier JE, Turcotte ÉE, Bénard F, Lecomte R (2013) Assessment of the novel estrogen receptor PET tracer 4-fluoro-11β-methoxy-16α-[(18)F]fluoroestradiol (4FMFES) by PET imaging in a breast cancer murine model. Mol Imaging Biol 15(5):625–632

    Article  PubMed  Google Scholar 

  27. Paquette M, Lavallée É, Phoenix S, Ouellet R, Senta H, van Lier JE, Guérin B, Lecomte R, Turcotte ÉE (2018) Improved estrogen receptor assessment by PET using the novel radiotracer 18F-4FMFES in estrogen receptor-positive breast cancer patients: an ongoing phase II clinical trial. J Nucl Med 59(2):197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gaudin E, Thibaudeau C, Arpin L et al (2017) Initial results of a truly pixelated APD-based PET scanner for high-resolution preclinical imaging. J Nucl Med 58(suppl 1):91

    Google Scholar 

  29. Lim JL, Zheng L, Berridge MS, Tewson TJ (1996) The use of 3-methoxymethyl-16-beta, 17-beta-epiestriol-O-cyclic sulfone as the precursor in the synthesis of [18F]-16α-fluoroestradiol. Nucl Med Biol 23:911–915

    Article  CAS  PubMed  Google Scholar 

  30. Seimbille Y, Ali H, van Lier JE (2002) Synthesis of 2,16α- and 4,16α-difluoroestradiols and their 11β-methoxy derivatives as potential estrogen receptor-binding radiopharmaceuticals. J Chem Soc Perkin Trans 5:657–663

    Article  CAS  Google Scholar 

  31. Bergeron M, Cadorette J, Tétrault MA, Beaudoin JF, Leroux JD, Fontaine R, Lecomte R (2014) Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research. Phys Med Biol 59(3):661–678

    Article  PubMed  Google Scholar 

  32. Selivanov VV, Picard Y, Cadorette J, Rodrigue S, Lecomte R (2000) Detector response models for statistical iterative image reconstruction in high resolution PET. IEEE Trans Nucl Sci 47(3):1168–1175

    Article  Google Scholar 

  33. Mitchner NA, Garlick C, Ben-Jonathan N (1998) Cellular distribution and gene regulation of estrogen receptors alpha and beta in the rat pituitary gland. Endocrinology 139(9):3976–3983

    Article  CAS  PubMed  Google Scholar 

  34. Laflamme N, Nappi RE, Drolet G, Labrie C, Rivest S (1998) Expression and neuropeptidergic characterization of estrogen receptors (ERα and ERβ) throughout the rat brain: anatomical evidence of distinct roles of each subtype. J Neurobiol 36:357–378

    Article  CAS  PubMed  Google Scholar 

  35. Kanageswaran N, Nagel M, Scholz P, Mohrhardt J, Gisselmann G, Hatt H (2016) Modulatory effects of sex steroids progesterone and estradiol on odorant evoked responses in olfactory receptor neurons. PLoS One 2016;11(8):e0159640

  36. Peterson LM, Kurland BF, Linka JM et al (2011) Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer. Nucl Med Biol 38:969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoo J, Dence CS, Sharp TL, Katzenellenbogen JA, Welch MJ (2005) Synthesis of an estrogen receptor-β selective radioligand: 5-[18F]fluoro-(2R*,3S*)-2,3-bis(4-hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16α-[18F]Fluoro-17β-estradiol. J Med Chem 48:6366–6378

    Article  CAS  PubMed  Google Scholar 

  38. Antunes IF, van Waarde A, Dierckx RA et al (2017) Synthesis and evaluation of the estrogen receptor β-selective radioligand 2-18F-fluoro-6-(6-hydroxynaphthalen-2-yl)pyridin-3-ol: comparison with 16α-18F-fluoro-17β-estradiol. J Nucl Med 58(4):554–559

    Article  CAS  PubMed  Google Scholar 

  39. Lamichhane TR, Pangeni S, Paudel S, Lamichhane HP (2015) Age and gender related variations of pituitary gland size of healthy nepalese people using magnetic resonance imaging. Am J Biomed Eng 5(4):130–135

    Google Scholar 

  40. Cao D, Ma X, Zhang WJ, Xie Z (2017) Dissection and coronal slice preparation of developing mouse pituitary gland. J Vis Exp 16(129). https://doi.org/10.3791/56356

  41. DuBray La Perle KM, Dintzis SM (2017) Endocrine system. In: Treuting PM, Dintzis SM, Montine KS (eds) Comparative anatomy and histology; a mouse. Elsevier, Rat and Human Atlas, pp 251–273

    Google Scholar 

  42. Catana C (2019) Development of dedicated brain PET imaging devices: recent advances and future perspectives. J Nucl Med 60(8):1044–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Watanabe M, Saito A, Isobe T, Ote K, Yamada R, Moriya T, Omura T (2017) Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors. Phys Med Biol 62(17):7148–7166

    Article  CAS  PubMed  Google Scholar 

  44. Gaudin É, Toussaint M, Thibaudeau C, Paille M, Fontaine R, Lecomte R (2019) Performance simulation of an ultra-high resolution brain PET scanner using 1.2-mm pixel detectors. IEEE Trans Radiat Plasma Med Sci 3(3):334–342

    Article  PubMed  Google Scholar 

  45. Gaudin É, Toussaint M, Thibaudeau C et al (2019) Simulation studies of the SAVANT high resolution dedicated brain PET scanner using individually coupled APD detectors and DOI encoding. J Nucl Med 60(suppl 1):531

    Google Scholar 

Download references

Funding

This project was indirectly funded by the Canadian Breast Cancer Foundation (CBCF) for the clinical portion, as well as the Natural Sciences and Engineering Research Council of Canada for the development of the scanners. The preclinical studies were carried out with the support of the Sherbrooke Molecular Imaging Center and the Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Paquette.

Ethics declarations

Conflict of Interest

RL is a co-founder and chief scientific officer of IR&T Inc. who was involved in the development of the prototype ultra-high-resolution PET scanner LabPET II. The other authors have no conflict of interest to declare regarding this paper or the results therein.

Ethical Approval

All animal procedures were approved by the Ethical Committee for Animal Care of the Université de Sherbrooke, in compliance with the policies and directives of the Canadian Council on Animal Care. Patients were retroactively analyzed from a previously reported phase II breast cancer clinical trial evaluating 4FMFES-PET, which was performed under the authority of Health Canada and approved by the Sherbrooke University Hospital Clinical Research Ethics Committee and Institutional Board.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paquette, M., Phoenix, S., Lavallée, É. et al. Cross-Species Physiological Assessment of Brain Estrogen Receptor Expression Using 18F-FES and 18F-4FMFES PET Imaging. Mol Imaging Biol 22, 1403–1413 (2020). https://doi.org/10.1007/s11307-020-01520-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01520-w

Key words

Navigation