Skip to main content

Advertisement

Log in

Simple and Robust Intravital Microscopy Procedures in Hybrid TIE2GFP-BALB/c Transgenic Mice

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The endeavor of deciphering intricate phenomena within the field of molecular medicine dictates the necessity to investigate tumor/disease microenvironment real-time on cellular level. We, hereby, design simple and robust intravital microscopy strategies, which can be used to elucidate cellular or molecular interactions in a fluorescent mouse model.

Procedures

We crossbred transgenic TIE2GFP mice with nude BALB/c mice, allowing the breeding of immunocompetent and immunodeficient mouse models expressing green fluorescent protein (GFP) in vascular endothelium. Then, we surgically exposed various tissues of interest to perform intravital microscopy.

Results

By utilizing simple tissue preparation procedures and confocal or two-photon microscopy, we produced high-resolution static snapshots, dynamic sequences, and 3D reconstructions of orthotopically grown mammary tumor, skin inflammation, brain, and muscle. The homogenous detection of GFP expressed by endothelial cells and a combination of fluorescence agents enabled landmarking of tumor microenvironment and precise molecular tagging.

Conclusion

Simple intravital microscopy procedures on TIE2GFP mice allowed a real-time multi-color visualization of tissue microenvironment, underlining that robust microscopy strategies are relatively simple and can be readily available for many tissues of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Pittet MJ, Weissleder R (2011) Intravital imaging. Cell 147:983–991

    Article  CAS  Google Scholar 

  2. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  CAS  Google Scholar 

  3. Hak S, Reitan NK, Haraldseth O, de Lange DC (2010) Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis 13:113–130

    Article  Google Scholar 

  4. Kedrin D, Gligorijevic B, Wyckoff J, Verkhusha VV, Condeelis J, Segall JE, van Rheenen J (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5:1019–1021

    Article  CAS  Google Scholar 

  5. Entenberg D, Voiculescu S, Guo P, Borriello L, Wang Y, Karagiannis GS, Jones J, Baccay F, Oktay M, Condeelis J (2018) A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat Methods 15:73–80

    Article  CAS  Google Scholar 

  6. Laschke M, Vollmar MM (2011) The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue. Eur Cells Mater 22:147–167

    Article  CAS  Google Scholar 

  7. Lehr HA, Leunig M, Menger MD, Nolte D, Messmer K (1993) Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol 143:1055–1062

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hak S, Helgesen E, Hektoen HH, Huuse EM, Jarzyna PA, Mulder WJ, Haraldseth O, Davies Cde L (2012) The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging. ACS Nano 6:5648–5658

    Article  CAS  Google Scholar 

  9. Hak S, Cebulla J, Huuse EM, Davies Cde L, Mulder WJ, Larsson HB, Haraldseth O (2014) Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy. Angiogenesis 17:93–107

    Article  CAS  Google Scholar 

  10. Murphy EA, Majeti BK, Barnes LA, Makale M, Weis SM, Lutu-Fuga K, Wrasidlo W, Cheresh DA (2008) Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci USA 105:9343–9348

    Article  CAS  Google Scholar 

  11. Leimgruber A, Berger C, Cortez-Retamozo V, Etzrodt M, Newton AP, Waterman P, Figueiredo JL, Kohler RH, Elpek N, Mempel TR, Swirski FK, Nahrendorf M, Weissleder R, Pittet MJ (2009) Behavior of endogenous tumor-associated macrophages assessed in vivo using a functionalized nanoparticle. Neoplasia 11:459–468

    Article  CAS  Google Scholar 

  12. Miller MA, Chandra R, Cuccarese MF et al (2017) Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci Transl Med 9:eaal0225

    Article  Google Scholar 

  13. Entenberg D, Pastoriza JM, Oktay MH, Voiculescu S, Wang Y, Sosa MS, Aguirre-Ghiso J, Condeelis J (2017) Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods 128:65–77

    Article  CAS  Google Scholar 

  14. Mulder WJM, Castermans K, van Beijnum JR, Oude Egbrink MG, Chin PT, Fayad ZA, Löwik CW, Kaijzel EL, Que I, Storm G, Strijkers GJ, Griffioen AW, Nicolay K (2009) Molecular imaging of tumor angiogenesis using αvβ3-integrin targeted multimodal quantum dots. Angiogenesis 12:17–24

    Article  CAS  Google Scholar 

  15. Wagner M, Baer C, Zuschratter W, et al. (2017) Intravital microscopy of monocyte homing and tumor-related angiogenesis in a murine model of peripheral arterial disease. J Vis Exp 126:e56290

  16. Pai S, Danne KJ, Qin J et al (2013) Visualizing leukocyte trafficking in the living brain with 2-photon intravital microscopy. Front Cell Neurosci 6:67

    Article  Google Scholar 

  17. Wang Z (2016) Imaging nanotherapeutics in inflamed vasculature by intravital microscopy. Theranostics 6:2431–2438

    Article  CAS  Google Scholar 

  18. Seynhaeve ALB, ten Hagen TLM (2018) Intravital microscopy of tumor-associated vasculature using advanced dorsal skinfold window chambers on transgenic fluorescent mice. J Vis Exp 131:e55115

  19. Sofias AM, Andreassen T, Hak S (2018) Nanoparticle ligand-decoration procedures affect in vivo interactions with immune cells. Mol Pharm 15:5754–5761

    Article  CAS  Google Scholar 

  20. Weissleder R, Nahrendorf M, Pittet MJ (2014) Imaging macrophages with nanoparticles. Nat Mater 13:125–138

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Central Norway Regional Health Authority “Helse Midt-Norge” [AMS: PhD stipend (90062100), travel grant (90284100); SH: researcher grant (90262100)], and the Norwegian Research Council (SH: 230788/F20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandros Marios Sofias or Sjoerd Hak.

Ethics declarations

All procedures were approved by the Norwegian Animal Research Authorities.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofias, A.M., Åslund, A.K.O., Hagen, N. et al. Simple and Robust Intravital Microscopy Procedures in Hybrid TIE2GFP-BALB/c Transgenic Mice. Mol Imaging Biol 22, 486–493 (2020). https://doi.org/10.1007/s11307-019-01442-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01442-2

Key words

Navigation