Skip to main content

Advertisement

Log in

Quantum Dot-Based Simultaneous Multicolor Imaging

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Quantum dots have attracted a great deal of attention among researchers in optical imaging because of their unique physicochemical properties. Their adjustable size allows quantum dots to emit visible fluorescence with different wavelengths excited by a single light source, allowing them to play an unmatched role in multitarget simultaneous multicolor imaging of tissues and cells compared with other molecular biotechnologies and traditional fluorescent materials. This technology affords real-time observation in situ of multiple biomarkers, allowing us to quantify their expression levels, and helping us to gain a deeper understanding of the interactions among biomolecules and the relationship between biomolecules and disease occurrence, progression, and prognosis. This has potential to aid in clinical diagnosis and treatment decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 6:143–162

    CAS  Google Scholar 

  3. Wang LW, Peng CW, Chen C, Li Y (2015) Quantum dots-based tissue and in vivo imaging in breast cancer researches: current status and future perspectives. Breast Cancer Res Treat 151:7–17

    PubMed  PubMed Central  Google Scholar 

  4. Yong K-T, Roy I, Law W-C, Hu R (2010) Synthesis of cRGD-peptide conjugated near-infrared CdTe/ZnSe core –shell quantum dots for in vivo cancer targeting and imaging. Chem Commun 46:7136–7138

    CAS  Google Scholar 

  5. Tang J, Huang N, Zhang X, Zhou T, Tan Y, Pi J, Pi L, Cheng S, Zheng H, Cheng Y (2017) Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine 12:3899–3911

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Phillips E, Penate-Medina O, Zanzonico PB et al (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6:149–172

    Google Scholar 

  7. Bae PK, Chung BH (2014) Multiplexed detection of various breast cancer cells by perfluorocarbon/quantum dot nanoemulsions conjugated with antibodies. Nano Converg 1:23

    PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Wang Y, Chen G, Li Y, Xu W, Gong S (2017) Quantum-dot-based theranostic micelles conjugated with an anti-EGFR nanobody for triple-negative breast cancer therapy. ACS Appl Mater Interfaces 9:30297–30305

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Radenkovic D, Kobayashi H, Remsey-Semmelweis E, Seifalian AM (2016) Quantum dot nanoparticle for optimization of breast cancer diagnostics and therapy in a clinical setting. Nanomedicine 12:1581–1592

    CAS  PubMed  Google Scholar 

  10. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106(29):7177–7185

    CAS  Google Scholar 

  11. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    CAS  Google Scholar 

  12. Lin G, Wang X, Yin F, Yong KT (2015) Passive tumor targeting and imaging by using mercaptosuccinic acid-coated near-infrared quantum dots. Int J Nanomedicine 10:335–345

    PubMed  PubMed Central  Google Scholar 

  13. Bruchez M, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    CAS  PubMed  Google Scholar 

  14. Tasso M, Singh MK, Giovanelli E, Fragola A, Loriette V, Regairaz M, Dautry F, Treussart F, Lenkei Z, Lequeux N, Pons T (2015) Oriented bioconjugation of unmodified antibodies to quantum dots capped with copolymeric ligands as versatile cellular imaging tools. ACS Appl Mater Interfaces 7:26904–26913

    CAS  PubMed  Google Scholar 

  15. Alam F, Yadav N (2013) Potential applications of quantum dots in mapping sentinel lymph node and detection of micrometastases in breast carcinoma. J Breast Cancer 16:1–11

    PubMed  PubMed Central  Google Scholar 

  16. Ren D, Wang B, Hu C, Zheng Y (2017) Quantum dot probes for cellular analysis. Anal Methods 9:2621–2632

    CAS  Google Scholar 

  17. Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    CAS  PubMed  Google Scholar 

  18. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    CAS  PubMed  Google Scholar 

  19. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    CAS  Google Scholar 

  20. Yuan JP, Wang LW, Qu AP et al (2015) Quantum dots-based quantitative and in situ multiple imaging on ki67 and cytokeratin to improve ki67 assessment in breast cancer. PLoS One 10:e0122734

    PubMed  PubMed Central  Google Scholar 

  21. Yang XQ, Chen C, Peng CW, Hou JX, Liu SP, Qi CB, Gong YP, Zhu XB, Pang DW, Li Y (2011) Quantum dot-based quantitative immune-fluorescence detection and spectrum analysis of epidermal growth factor receptor in breast cancer tissue arrays. Int J Nanomedicine 6:2265–2273

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang H, Sachdev D, Wang C, Hubel A, Gaillard-Kelly M, Yee D (2009) Detection and downregulation of type I IGF receptor expression by antibody conjugated quantum dots in breast cancer cells. Breast Cancer Res Treat 114:277–285

    CAS  PubMed  Google Scholar 

  23. Chen C, Peng J, Xia HS, Yang GF, Wu QS, Chen LD, Zeng LB, Zhang ZL, Pang DW, Li Y (2009) Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials 30:2912–2918

    CAS  PubMed  Google Scholar 

  24. Chen C, Xia HS, Gong YP, Peng J, Peng CW, Hu MB, Zhu XB, Pang DW, Sun SR, Li Y (2010) The quantitative detection of total HER2 load by quantum dots and the identification of a new subtype of breast cancer with different 5-year prognosis. Biomaterials 31:8818–8825

    CAS  PubMed  Google Scholar 

  25. Chen C, Sun SR, Gong YP, Qi CB, Peng CW, Yang XQ, Liu SP, Peng J, Zhu S, Hu MB, Pang DW, Li Y (2011) Quantum dots-based molecular classification of breast cancer by quantitative spectroanalysis of hormone receptors and HER2. Biomaterials 32:7592–7599

    CAS  PubMed  Google Scholar 

  26. Yang K, Zhang FJ, Tang H et al (2011) In-vivo imaging of oral squamous cell carcinoma by EGFR monoclonal antibody conjugated near-infrared quantum dots in mice. Int J Nanomedicine 6:1739–1745

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen LD, Liu J, Yu XF, He M, Pei XF, Tang ZY, Wang QQ, Pang DW, Li Y (2008) The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials 29:4170–4176

    CAS  PubMed  Google Scholar 

  28. Park Y, Ryu YM, Wang T et al (2017) Colorectal cancer diagnosis using enzyme-sensitive ratiometric fluorescence dye and antibody–quantum dot conjugates for multiplexed detection. Adv Funct Mater 28:1703450

    Google Scholar 

  29. Miyashita M, Gonda K, Tada H, Watanabe M, Kitamura N, Kamei T, Sasano H, Ishida T, Ohuchi N (2016) Quantitative diagnosis of HER2 protein expressing breast cancer by single-particle quantum dot imaging. Cancer Med 5:2813–2824

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bilan R, Nabiev I, Sukhanova A (2016) Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. Chembiochem 17:2103–2114

    CAS  PubMed  Google Scholar 

  31. Glazer ES, Curley SA (2010) Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles. Cancer 116:3285–3293

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mukherjee A, Shim Y, Myong Song J (2016) Quantum dot as probe for disease diagnosis and monitoring. Biotechnol J 11:31–42

    CAS  PubMed  Google Scholar 

  33. Smith AM, Duan HW, Rhyner MN, Ruan G, Nie S (2006) A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys Chem Chem Phys 8:3895–3903

    CAS  PubMed  Google Scholar 

  34. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, Petros JA, O’Regan RM, Yezhelyev MV, Simons JW, Wang MD, Nie S (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2:1152–1165

    CAS  PubMed  Google Scholar 

  35. Huang DH, Peng XH, Su L, Wang D, Khuri FR, Shin DM, Chen Z(G) (2010) Comparison and optimization of multiplexed quantum dot-based immunohistofluorescence. Nano Res 3:61–68

    CAS  Google Scholar 

  36. Chen C, Peng J, Sun SR, Peng CW, Li Y, Pang DW (2012) Tapping the potential of quantum dots for personalized oncology: current status and future perspectives. Nanomedicine 7:411–428

    CAS  PubMed  Google Scholar 

  37. Chen C, Peng J, Xia H, Wu Q, Zeng L, Xu H, Tang H, Zhang Z, Zhu X, Pang D, Li Y (2010) Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity. Nanotechnology 21:095101

    PubMed  Google Scholar 

  38. Liu XL, Peng CW, Chen C, Yang XQ, Hu MB, Xia HS, Liu SP, Pang DW, Li Y (2011) Quantum dots-based double-color imaging of HER2 positive breast cancer invasion. Biochem Biophys Res Commun 409:577–582

    CAS  PubMed  Google Scholar 

  39. Peng CW, Liu XL, Chen C, Liu X, Yang XQ, Pang DW, Zhu XB, Li Y (2011) Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials 32:2907–2917

    CAS  PubMed  Google Scholar 

  40. Peng CW, Tian Q, Yang GF et al (2012) Quantum-dots based simultaneous detection of multiple biomarkers of tumor stromal features to predict clinical outcomes in gastric cancer. Biomaterials 33:5742–5752

    CAS  PubMed  Google Scholar 

  41. Jang JY, Jeon YK, Kim CW (2010) Degradation of HER2/neu by ANT2 shRNA suppresses migration and invasiveness of breast cancer cells. BMC Cancer 10:391

    PubMed  PubMed Central  Google Scholar 

  42. Bao W, Fu HJ, Jia LT, Zhang Y, Li W, Jin BQ, Yao LB, Chen SY, Yang AG (2010) HER2-mediated upregulation of MMP-1 is involved in gastric cancer cell invasion. Arch Biochem Biophys 499:49–55

    CAS  PubMed  Google Scholar 

  43. Kosaka N, Ogawa M, Sato N, Choyke PL, Kobayashi H (2009) In vivo real-time, multicolor, quantum dot lymphatic imaging. J Investig Dermatol 129:2818–2822

    CAS  PubMed  Google Scholar 

  44. Si C, Zhang Y, Lv X, Yang W et al (2015) In vivo lymph node mapping by cadmium tellurium quantum dots in rats. J Surg Res 192:305–311

    Google Scholar 

  45. Peng L, He M, Chen B, Wu Q, Zhang Z, Pang D, Zhu Y, Hu B (2013) Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells. Biomaterials 34:9545–9558

    CAS  PubMed  Google Scholar 

  46. Modlitbová P, Pořízka P, Novotný K, Drbohlavová J, Chamradová I, Farka Z, Zlámalová-Gargošová H, Romih T, Kaiser J (2018) Short-term assessment of cadmium toxicity and uptake from different types of Cd-based quantum dots in the model plant Allium cepa L. Ecotoxicol Environ Saf 153:23–31

    PubMed  Google Scholar 

  47. Chan WH, Shiao NH (2008) Cytotoxic effect of CdSe quantum dots on mouse embryonic development. Acta Pharmacol Sin 29:259–266

    CAS  PubMed  Google Scholar 

  48. Chu M, Wu Q, Yang H, Yuan R, Hou S, Yang Y, Zou Y, Xu S, Xu K, Ji A, Sheng L (2010) Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 6:670–678

    CAS  PubMed  Google Scholar 

  49. Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, Marchal F, Dubertret B (2010) Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4:2531–2538

    CAS  PubMed  Google Scholar 

  50. Rizvi SB, Rouhi S, Taniguchi S et al (2014) Near-infrared quantum dots for HER2 localization and imaging of cancer cells. Int J Nanomedicine 9:1323–1337

    PubMed  PubMed Central  Google Scholar 

  51. Gao J, Chen K, Luong R, Bouley DM, Mao H, Qiao T, Gambhir SS, Cheng Z (2012) A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett 12:281–286

    PubMed  Google Scholar 

  52. Lin G, Ouyang Q, Hu R, Ding Z, Tian J, Yin F, Xu G, Chen Q, Wang X, Yong KT (2015) In vivo toxicity assessment of non-cadmium quantum dots in BALB/c mice. Nanomedicine 11:341–350

    CAS  PubMed  Google Scholar 

  53. Zhang Y, Hong G, Chen G et al (2012) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6:3695–3702

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Zhao N, Qin Y, Wu F, Xu Z, Lan T, Cheng Z, Zhao P, Liu H (2018) Affibody-functionalized Ag2S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale 10:16581–16590

    CAS  PubMed  Google Scholar 

  55. Zhang J, Yan J, Wang Y, Zhang Y (2018) One-step hydrothermal approach to synthesis carbon dots from D-sorbitol for detection of iron(III) and cell imaging. J Nanosci Nanotechnol 18:4457–4463

    CAS  PubMed  Google Scholar 

  56. Kaur H, Raj P, Sharma H, Verma M, Singh N, Kaur N (2018) Highly selective and sensitive fluorescence sensing of nanomolar Zn2+ ions in aqueous medium using calix[4]arene passivated carbon quantum dots based on fluorescence enhancement: real-time monitoring and intracellular investigation. Anal Chim Acta 1009:1–11

    CAS  PubMed  Google Scholar 

  57. Mollarasouli F, Serafín V, Campuzano S, Yáñez-Sedeño P, Pingarrón JM, Asadpour-Zeynali K (2018) Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes. Anal Chim Acta 1011:28–34

    CAS  PubMed  Google Scholar 

  58. Nafiujjaman M, Joon H, Kwak KS, Lee YK (2018) Synthesis of nitrogen- and chlorine-doped graphene quantum dots for cancer cell imaging. J Nanosci Nanotechnol 18:3793–3799

    CAS  PubMed  Google Scholar 

  59. Zong S, Zong J, Chen C, Jiang X, Zhang Y, Wang Z, Cui Y (2018) Single molecule localization imaging of exosomes using blinking silicon quantum dots. Nanotechnology 29:065705

    PubMed  Google Scholar 

  60. Dohnalová K, Gregorkiewicz T, Kůsová K (2014) Silicon quantum dots: surface matters. J Phys Condens Matter 26:173201

    PubMed  Google Scholar 

  61. Liu H, Zhang X, Xing B (2010) Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small 6:1087–1091

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Libby Cone, MD, MA, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac) for editing a draft of this manuscript.

Funding

This work was supported by the Key Project of National Natural Science Foundation of China (No. 81630049), the Key Project of Hubei Province Technical Innovation Special Funding (No. 2017ACA182), and the National Science and Technology Support Program (No. 2015BAI01B09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Lan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, Z. & Lan, X. Quantum Dot-Based Simultaneous Multicolor Imaging. Mol Imaging Biol 22, 820–831 (2020). https://doi.org/10.1007/s11307-019-01432-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01432-4

Key Words

Navigation