Skip to main content

Advertisement

Log in

Simultaneous PET/MRI in the Evaluation of Breast and Prostate Cancer Using Combined Na[18F] F and [18F]FDG: a Focus on Skeletal Lesions

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to prospectively evaluate the performance of sodium 18F]fluoride (Na[18F]F)/2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) simultaneous time-of-flight enabled positron emission tomography (PET)/magnetic resonance imaging (MRI) for the detection of skeletal metastases in selected patients with advanced breast and prostate cancers.

Procedure

The institutional review board approved this HIPAA-compliant protocol. Written informed consent was obtained from each patient. A total of 74 patients (23 women and 51 men with breast and prostate cancer, respectively) referred for standard-of-care whole-body bone scintigraphy (WBBS) were enrolled in this prospective study. All patients underwent a [99mTc]methyldiphosphonate ([99mTc]MDP) WBBS followed by Na[18F]F/[18F]FDG PET/MRI. Lesions detected by each imaging modality were tabulated and a lesion-based and patient-based analysis was conducted.

Results

On a patient-based analysis, [99mTc]MDP WBBS identified skeletal lesions in 37 patients and PET/MRI in 45 patients. On a lesion-based analysis, WBBS identified a total of 81 skeletal lesions, whereas PET/MRI identified 140 lesions. Additionally, PET/MRI showed extra-skeletal lesions in 19 patients, including lymph nodes (16), prostate (4) lung (3), and liver (2) lesions.

Conclusions

The ability of Na[18F]F/[18F]FDG PET/MRI to identify more skeletal lesions than 99mTc-MDP WBBS and to additionally identify extra-skeletal disease may be beneficial for patient care and represent an alternative to the single modalities performed separately. Na[18F]F/[18F]FDG PET/MRI is a promising approach for evaluation of skeletal and extra-skeletal lesions in a selected population of breast and prostate cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46:1356–1367

    PubMed  Google Scholar 

  2. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27:165–176

    Article  CAS  Google Scholar 

  3. Van den Wyngaert T, Strobel K, Kampen T et al (2016) The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging 43(1723):38

    Google Scholar 

  4. Jacobson AF, Fogelman I (1998) Bone scanning in clinical oncology: does it have a future? Eur J Nucl Med Mol Imaging 25:1219–1223

    Article  CAS  Google Scholar 

  5. Bombardieri E, Setti L, Kirienko M, Antunovic L, Guglielmo P, Ciocia G (2015) Which metabolic imaging, besides bone scan with 99mTc-phosphonates, for detecting and evaluating bone metastases in prostatic cancer patients? An open discussion. Q J Nucl Med Mol Imaging 59:381–399

    CAS  PubMed  Google Scholar 

  6. Czernin J, Satyamurthy N, Schiepers C (2010) Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med 51:1826–1829

    Article  CAS  Google Scholar 

  7. Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  8. Withofs N, Grayet B, Tancredi T, Rorive A, Mella C, Giacomelli F, Mievis F, Aerts J, Waltregny D, Jerusalem G, Hustinx R (2011) 18F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun 32:168–176

    Article  Google Scholar 

  9. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, Neumaier B, Träger H, Nüssle K, Reske SN (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40:1623–1629

    CAS  PubMed  Google Scholar 

  10. Iagaru A, Mittra E, Dick DW, Gambhir SS (2012) Prospective evaluation of (99m)Tc MDP scintigraphy, 18F NaF PET/CT, and 18F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol 14:252–259

    Article  Google Scholar 

  11. Shen CT, Qiu ZL, Han TT, Luo QY (2015) Performance of 18F-fluoride PET or PET/CT for the detection of bone metastases: a meta-analysis. Clin Nucl Med 40:103–110

    Article  Google Scholar 

  12. Fogelman I, Cook G, Israel O, van der Wall H (2005) Positron emission tomography and bone metastases. Semin Nucl Med 35:135–142

    Article  Google Scholar 

  13. Jadvar H (2009) Molecular imaging of prostate cancer with 18F-fluorodeoxyglucose PET. Nat Rev Urol 6:317–323

    Article  CAS  Google Scholar 

  14. Meirelles GS, Schoder H, Ravizzini GC et al (2010) Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res 16:6093–6099

    Article  CAS  Google Scholar 

  15. Iagaru A, Young P, Mittra E, Dick DW, Herfkens R, Gambhir SS (2013) Pilot prospective evaluation of 99mTc-MDP scintigraphy, 18F NaF PET/CT, 18F FDG PET/CT and whole-body MRI for detection of skeletal metastases. Clin Nucl Med 38:e290–e296

    Article  Google Scholar 

  16. Iagaru A, Mittra E, Yaghoubi SS, Dick DW, Quon A, Goris ML, Gambhir SS (2009) Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med 50:501–505

    Article  Google Scholar 

  17. Lin FI, Rao JE, Mittra ES, Nallapareddy K, Chengapa A, Dick DW, Gambhir SS, Iagaru A (2012) Prospective comparison of combined 18F-FDG and 18F-NaF PET/CT vs. 18F-FDG PET/CT imaging for detection of malignancy. Eur J Nucl Med Mol Imaging 39:262–270

    Article  CAS  Google Scholar 

  18. Minamimoto R, Loening A, Jamali M, Barkhodari A, Mosci C, Jackson T, Obara P, Taviani V, Gambhir SS, Vasanawala S, Iagaru A (2015) Prospective comparison of 99mTc-MDP scintigraphy, combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate Cancer. J Nucl Med 56:1862–1868

    Article  Google Scholar 

  19. Sampath SC, Sampath SC, Mosci C, Lutz AM, Willmann JK, Mittra ES, Gambhir SS, Iagaru A (2015) Detection of osseous metastasis by 18F-NaF/18F-FDG PET/CT versus CT alone. Clin Nucl Med 40:e173–e177

    Article  Google Scholar 

  20. Liu T, Cheng T, Xu W, Yan WL, Liu J, Yang HL (2011) A meta-analysis of 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with breast cancer. Skelet Radiol 40:523–531

    Article  Google Scholar 

  21. Cook GJ, Azad G, Padhani AR (2016) Bone imaging in prostate cancer: the evolving roles of nuclear medicine and radiology. Clin Transl Imaging 4:439–447

    Article  Google Scholar 

  22. Sotoudeh H, Sharma A, Fowler KJ, McConathy J, Dehdashti F (2016) Clinical application of PET/MRI in oncology. J Magn Reson Imaging 44:265–276

    Article  Google Scholar 

  23. Mosavi F, Johansson S, Sandberg DT, Turesson I, Sörensen J, Ahlström H (2012) Whole-body diffusion-weighted MRI compared with 18F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am J Roentgenol 199:1114–1120

    Article  Google Scholar 

  24. Loening AM, Litwiller DV, Saranathan M, Vasanawala SS (2017) Increased speed and image quality for pelvic single-shot fast spin-Echo imaging with variable refocusing Flip angles and full-Fourier acquisition. Radiology 282:561–568

    Article  Google Scholar 

  25. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, Elias AD, Farrar WB, Forero A, Giordano SH, Goetz M, Goldstein LJ, Hudis CA, Isakoff SJ, Marcom PK, Mayer IA, McCormick B, Moran M, Patel SA, Pierce LJ, Reed EC, Salerno KE, Schwartzberg LS, Smith KL, Smith ML, Soliman H, Somlo G, Telli M, Ward JH, Shead DA, Kumar R (2015) Breast Cancer version 2.2015. J Natl Compr Cancer Netw 13:448–475

    Article  CAS  Google Scholar 

  26. Groheux D (2018) Role of Fludeoxyglucose in Breast Cancer: Treatment Response. PET Clin 13:395–414

    Article  Google Scholar 

  27. Jadvar H (2016) Is There Use for FDG-PET in Prostate Cancer? Semin Nucl Med 46(6):502–506

    Article  Google Scholar 

  28. Eiber M, Holzapfel K, Ganter C, Epple K, Metz S, Geinitz H, Kübler H, Gaa J, Rummeny EJ, Beer AJ (2011) Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging 33:1160–1170

    Article  Google Scholar 

  29. Stecco A, Trisoglio A, Soligo E, Berardo S, Sukhovei L, Carriero A (2018) Whole-body MRI with diffusion-weighted imaging in bone metastases: a narrative review. Diagnostics (Basel) 8:45

    Article  CAS  Google Scholar 

  30. Damle NA, Bal C, Bandopadhyaya GP, Kumar L, Kumar P, Malhotra A, Lata S (2013) The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 31(4):262–269

    Article  Google Scholar 

  31. Araz M, Aras G, Kucuk ON (2015) The role of 18F-NaF PET/CT in metastatic bone disease. J Bone Oncol 4:92–97

    Article  Google Scholar 

  32. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 49:68–78

    Article  Google Scholar 

  33. Iagaru A, Mittra E, Mosci C, Dick DW, Sathekge M, Prakash V, Iyer V, Lapa P, Isidoro J, de Lima JM, Gambhir SS (2013) Combined 18F-fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Med 54:176–183

    Article  CAS  Google Scholar 

  34. Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS (2016) NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Med Phys 43:2334–2343

    Article  Google Scholar 

  35. Segall G, Delbeke D, Stabin M et al (2010) SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med 51:1813Y1820

    Article  Google Scholar 

Download references

Acknowledgments

We thank Negin Hatami, MD, Praveen Gulaka, PhD, our technologists Dawn Holley and Harsh Gandhi for their technical assistance, as well as our clinical coordinators. A special thank you is extended to all the patients who agreed to participate in the study and their families.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Iagaru.

Ethics declarations

Conflict of Interest

This study was funded by GE Healthcare. Ida Sonni, Ryogo Minamimoto, Lucia Baratto, Negin Hatami have no conflict of interest. Sanjiv Gambhir, Andrei Iagaru, Andreas Loening and Shreyas Vasanawala received institutional research grants from GE Healthcare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonni, I., Minamimoto, R., Baratto, L. et al. Simultaneous PET/MRI in the Evaluation of Breast and Prostate Cancer Using Combined Na[18F] F and [18F]FDG: a Focus on Skeletal Lesions. Mol Imaging Biol 22, 397–406 (2020). https://doi.org/10.1007/s11307-019-01392-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01392-9

Key words

Navigation