Skip to main content

Advertisement

Log in

A Pilot Study of Texture Analysis of Primary Tumor [18F]FDG Uptake to Predict Recurrence in Surgically Treated Patients with Non-small Cell Lung Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To examine whether the heterogeneous texture parameters in primary tumor can predict prognosis of patients with non-small cell lung cancer (NSCLC) received surgery after 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET)/X-ray computed tomography (CT).

Procedure

This retrospective study included 55 patients with NSCLC who underwent [18F]FDG-PET/CT before surgery from January 2011 and December 2015. SUV-related (SUVmax and SUVmean), volumetric (metabolic tumor volume [SUV ≥ 2.5], and total lesion glycolysis) and texture parameters (local parameters; entropy, homogeneity, and dissimilarity and regional parameters; intensity variability [IV], size-zone variability [SZV], and zone percentage [ZP]) were obtained. Tumor size, TNM stage, SUV-related, volumetric, and texture parameters were compared between the patients with progression and without progression using Mann-Whitney’s U or χ2 test and progression-free survival (PFS) and prognostic significance were assessed by Kaplan-Meier method and Cox regression analysis, respectively.

Results

Nineteen patients eventually showed progression, and 36 patients were alive without progression during clinical follow-up (median follow-up PFS; 23 months [range, 1–71]). The patients with progression showed significantly larger tumor size (p < 0.001), higher IV (p = 0.010), and higher SZV (p = 0.007) than those without progression. PFS was significantly shorter in patients with large tumor size (p = 0.008), high T stage (p = 0.009), high stage (p = 0.013), high IV (p = 0.012), and high SZV (p = 0.015) at univariate analysis. At multivariate analysis, stage (hazard ratio [HR] 1.62, p = 0.035) and IV (hazard ratio 6.19, p = 0.048) were only remained independent predictors for PFS.

Conclusions

The regional heterogeneity texture parameters IV and SZV can predict tumor progression, and IV has the potential to predict prognosis of surgically treated NSCLC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM et al (2011) Global cancer statics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594

    Article  PubMed  Google Scholar 

  3. Zheng X, Schipper M, Kidwell K, Lin J, Reddy R, Ren Y, Chang A, Lv F, Orringer M, Spring Kong FM (2014) Survival outcome after stereotactic body radiation therapy and surgery for stage I non-small cell lung cancer: a meta-analysis. Int J Radiat Oncol Biol Phys 90:603–611

    Article  PubMed  Google Scholar 

  4. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, Postmus PE, Rusch V, Sobin L (2007) The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2:706–714

    Article  PubMed  Google Scholar 

  5. Naruke T, Tsuchiya R, Kondo H, Asamura H (2001) Prognosis and survival after resection for bronchogenic carcinoma based on the 1997 TNM-staging classification: the Japanese experience. Ann Thorac Surg 71:1759–1764

    Article  CAS  PubMed  Google Scholar 

  6. UyBico SJ, Wu CC, Suh RD et al (2010) Lung cancer staging essentials: the new TNM staging system and potential imaging pitfalls. Radiographics 30:1163–1181

    Article  PubMed  Google Scholar 

  7. Adebonojo SA, Bowser AN, Moritz DM, Corcoran PC (1999) Impact of revised stage classification of lung cancer on survival: a military experience. Chest 115:1507–1513

    Article  CAS  PubMed  Google Scholar 

  8. Park SY, Lee HS, Jang HJ, Lee GK, Chung KY, Zo JI (2011) Tumor necrosis as a prognostic factor for stage IA non-small cell lung cancer. Ann Thorac Surg 91:1668–1673

    Article  PubMed  Google Scholar 

  9. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238:405–422

    Article  Google Scholar 

  10. El Naqa I, Grigsby P, Apte A et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171

    Article  Google Scholar 

  11. Asselin MC, O'Connor JP, Boellaard R et al (2012) Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer 48:447–455

    Article  PubMed  Google Scholar 

  12. Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16:5928–5935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakajo M, Jinguji M, Nakabeppu Y, Nakajo M, Higashi R, Fukukura Y, Sasaki K, Uchikado Y, Natsugoe S, Yoshiura T (2017) Texture analysis of 18F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy. Eur J Nucl Med Mol Imaging 44:206–214

    Article  CAS  PubMed  Google Scholar 

  14. Cook GJ, Yip C, Siddique M et al (2013) Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med 54:19–26

    Article  PubMed  Google Scholar 

  15. Hatt M, Majdoub M, Vallières M et al (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44

    Article  CAS  PubMed  Google Scholar 

  16. Tixier F, Hatt M, Valla C, Fleury V, Lamour C, Ezzouhri S, Ingrand P, Perdrisot R, Visvikis D, le Rest CC (2014) Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med 55:1235–1241

    Article  CAS  PubMed  Google Scholar 

  17. Kang SR, Song HC, Byun BH, Oh JR, Kim HS, Hong SP, Kwon SY, Chong A, Kim J, Cho SG, Park HJ, Kim YC, Ahn SJ, Min JJ, Bom HS (2014) Intratumoral metabolic heterogeneity for prediction of disease progression after concurrent chemoradiotherapy in patients with inoperable stage III non-small-cell lung cancer. Nucl Med Mol Imaging 48:16–25

    Article  CAS  PubMed  Google Scholar 

  18. Cook GJ, O'Brien ME, Siddique M et al (2015) Non-small cell lung cancer treated with erlotinib: heterogeneity of 18F-FDG uptake at PET-association with treatment response and prognosis. Radiology 276:883–893

    Article  PubMed  Google Scholar 

  19. Lovinfosse P, Janvary ZL, Coucke P, Jodogne S, Bernard C, Hatt M, Visvikis D, Jansen N, Duysinx B, Hustinx R (2016) FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy. Eur J Nucl Med Mol Imaging 43:1453–1460

    Article  CAS  PubMed  Google Scholar 

  20. Takeda K, Takanami K, Shirata Y, Yamamoto T, Takahashi N, Ito K, Takase K, Jingu K (2017) Clinical utility of texture analysis of 18F-FDG PET/CT in patients with stage I lung cancer treated with stereotactic body radiotherapy. J Radiat Res 58:862–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakajo M, Nakajo M, Nakayama H, Jinguji M, Nakabeppu Y, Higashi M, Nakamura Y, Sato M, Yoshiura T (2016) Dexamethasone suppression FDG PET/CT for differentiating between true- and false-positive pulmonary and mediastinal lymph node metastases in non-small cell lung cancer: a pilot study of FDG PET/CT after oral administration of dexamethasone. Radiology 279:246–253

    Article  PubMed  Google Scholar 

  22. Park SY, Cho A, Yu WS, Lee CY, Lee JG, Kim DJ, Chung KY (2015) Prognostic value of total lesion glycolysis by 18F-FDG PET/CT in surgically resected stage IA non-small cell lung cancer. J Nucl Med 56:45–49

    Article  CAS  PubMed  Google Scholar 

  23. Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55:414–422

    Article  CAS  PubMed  Google Scholar 

  24. Rami-Porta R, Crowley JJ, Goldstraw P (2009) The revised TNM staging system for lung cancer. Ann Thorac Cardiovasc Surg 15:4–9

    PubMed  Google Scholar 

  25. Liu J, Dong M, Sun X, Li W, Xing L, Yu J (2016) Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One 11:e0146195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hyun SH, Choi JY, Kim K, Kim J, Shim YM, Um SW, Kim H, Lee KH, Kim BT (2013) Volume-based parameters of 18F-fluorodeoxyglucose positron emission tomography/computed tomography improve outcome prediction in early-stage non-small cell lung cancer after surgical resection. Ann Surg 257:364–370

    Article  PubMed  Google Scholar 

  27. Domachevsky L, Groshar D, Galili R, Saute M, Bernstine H (2015) Survival prognostic value of morphological and metabolic variables in patients with stage I and II non-small cell lung cancer. Eur Radiol 25:3361–3367

    Article  CAS  PubMed  Google Scholar 

  28. Kim K, Kim SJ, Kim IJ, Seong Kim Y, Pak K, Kim H (2012) Prognostic value of volumetric parameters measured by F-18 FDG PET/CT in surgically resected non-small-cell lung cancer. Nucl Med Commun 33:613–620

    Article  PubMed  Google Scholar 

  29. Lin Y, Lin WY, Kao CH et al (2012) Prognostic value of preoperative metabolic tumor volumes on PET-CT in predicting disease-free survival of patients with stage I non-small cell lung cancer. Anticancer Res 32:5087–5091

    PubMed  Google Scholar 

  30. Kim DH, Son SH, Kim CY, Hong CM, Oh JR, Song BI, Kim HW, Jeong SY, Lee SW, Lee J, Ahn BC (2014) Prediction for recurrence using F-18 FDG PET/CT in pathologic N0 lung adenocarcinoma after curative surgery. Ann Surg Oncol 21:589–596

    Article  PubMed  Google Scholar 

  31. Van de Wiele C, Kruse V, Smeets P et al (2013) Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur J Nucl Med Mol Imaging 40:290–301

    Article  CAS  PubMed  Google Scholar 

  32. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  CAS  PubMed  Google Scholar 

  33. Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378

    Article  PubMed  Google Scholar 

  34. Nakajo M, Kajiya Y, Tani A, Jinguji M, Nakajo M, Kitazono M, Yoshiura T (2017) A pilot study for texture analysis of 18F-FDG and 18F-FLT-PET/CT to predict tumor recurrence of patients with colorectal cancer who received surgery. Eur J Nucl Med Mol Imaging 44:2158–2168

    Article  PubMed  Google Scholar 

  35. Moon SH, Choi JY, Lee HJ, Son YI, Baek CH, Ahn YC, Park K, Lee KH, Kim BT (2013) Prognostic value of 18F-FDG PET/CT in patients with squamous cell carcinoma of the tonsil: comparisons of volume-based metabolic parameters. Head Neck 35:15–22

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoyo Nakajo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was waived by the institutional review board for this retrospective study.

Electronic Supplementary Material

ESM 1

(PDF 554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajo, M., Jinguji, M., Shinaji, T. et al. A Pilot Study of Texture Analysis of Primary Tumor [18F]FDG Uptake to Predict Recurrence in Surgically Treated Patients with Non-small Cell Lung Cancer. Mol Imaging Biol 21, 771–780 (2019). https://doi.org/10.1007/s11307-018-1290-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1290-z

Key Words

Navigation