Skip to main content

Advertisement

Log in

Noninvasive Monitoring of the Mitochondrial Function in Mesenchymal Stromal Cells

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Mitochondria are a gatekeeper of cell survival and mitochondrial function can be used to monitor cell stress. Here we validate a pathway-specific reporter gene to noninvasively image the mitochondrial function of stem cells.

Procedures

We constructed a mitochondrial sensor with the firefly luciferase (Fluc) reporter gene driven by the NQO1 enzyme promoter. The sensor was introduced in stem cells and validated in vitro and in vivo, in a mouse model of myocardial ischemia/reperfusion (IR).

Results

The sensor activity showed an inverse relationship with mitochondrial function (R 2 = −0.975, p = 0.025) and showed specificity and sensitivity for mitochondrial dysfunction. In vivo, NQO1-Fluc activity was significantly higher in IR animals vs. controls, indicative of mitochondrial dysfunction, and was corroborated by ex vivo luminometry.

Conclusions

Reporter gene imaging allows assessment of the biology of transplanted mesenchymal stromal cells (MSCs), providing important information that can be used to improve the phenotype and survival of transplanted stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  2. Mazo M, Araña M, Pelacho B, Prósper F (2012) Mesenchymal stem cells and cardiovascular disease: a bench to bedside roadmap. Stem Cells Int 2012:1–11

    Article  Google Scholar 

  3. Schächinger V, Erbs S, Elsässer A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221

    Article  PubMed  Google Scholar 

  4. Strauer BE, Brehm M, Zeus T et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    Article  PubMed  Google Scholar 

  5. Wollert KC, Meyer GP, Lotz J et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    Article  PubMed  Google Scholar 

  6. Assmus B, Dimmeler S, Zeiher AM (2015) Cardiac cell therapy: lost in meta-analyses. Circ Res 116:1291–1292

    Article  CAS  PubMed  Google Scholar 

  7. Gyöngyösi M, Wojakowski W, Lemarchand P et al (2015) Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res 116:1346–1360

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee SH, Wolf PL, Escudero R et al (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342:626–633

    Article  CAS  PubMed  Google Scholar 

  9. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988

    Article  CAS  PubMed  Google Scholar 

  10. Forrester JS, Makkar RR, Marban E (2009) Long-term outcome of stem cell therapy for acute myocardial infarction. J Am Coll Cardiol 53:2270–2272

    Article  PubMed  Google Scholar 

  11. Mohsin S, Siddiqi S, Collins B, Sussman MA (2011) Empowering adult stem cells for myocardial regeneration. Circ Res 109:1415–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Don CW, Murry CE (2013) Improving survival and efficacy of pluripotent stem cell-derived cardiac grafts. J Cell Mol Med 17:1355–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boengler K, Heusch G, Schulz R (2011) Mitochondria in postconditioning. Antioxid Redox Signal 14:863–880

    Article  CAS  PubMed  Google Scholar 

  14. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  15. Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111:1208–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39:443–455

    Article  CAS  PubMed  Google Scholar 

  17. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  18. Bouchier-Hayes L, Lartigue L, Newmeyer DD (2005) Mitochondria: pharmacological manipulation of cell death. J Clin Invest 115:2640–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  CAS  PubMed  Google Scholar 

  20. Biniecka M, Fox E, Gao W et al (2011) Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis. Arthritis Rheum 63:2172–2182

    Article  CAS  PubMed  Google Scholar 

  21. Garedew A, Moncada S (2008) Mitochondrial dysfunction and HIF1alpha stabilization in inflammation. J Cell Sci 121:3468–3475

    Article  CAS  PubMed  Google Scholar 

  22. Milano G, Bianciardi P, Corno AF et al (2004) Myocardial impairment in chronic hypoxia is abolished by short aeration episodes: involvement of K+ATP channels. Exp Biol Med (Maywood) 229:1196–1205

    CAS  Google Scholar 

  23. Zhu W, Chen J, Cong X et al (2006) Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells 24:416–425

    Article  PubMed  Google Scholar 

  24. Ong SB, Gustafsson AB (2012) New roles for mitochondria in cell death in the reperfused myocardium. Cardiovasc Res 94:190–196

    Article  CAS  PubMed  Google Scholar 

  25. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  CAS  PubMed  Google Scholar 

  26. Sinusas AJ, Bengel F, Nahrendorf M et al (2008) Multimodality cardiovascular molecular imaging, part I. Circ Cardiovasc Imaging 1:244–256

    Article  PubMed  Google Scholar 

  27. Rodriguez-Porcel M (2010) In vivo imaging and monitoring of transplanted stem cells: clinical applications. Curr Cardiol Rep 12:51–58

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu JC (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108:1302–1305

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wu JC, Tseng JR, Gambhir SS (2004) Molecular imaging of cardiovascular gene products. J Nucl Cardiol 11:491–505

    Article  PubMed  Google Scholar 

  30. Chen IY, Greve JM, Gheysens O et al (2009) Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Mol Imaging Biol 11:178–187

    Article  PubMed  Google Scholar 

  31. Nguyen PK, Riegler J, Wu JC (2014) Stem cell imaging: from bench to bedside. Cell Stem Cell 14:431–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Psaltis PJ, Peterson KM, Xu R et al (2013) Noninvasive monitoring of oxidative stress in transplanted mesenchymal stromal cells. JACC Cardiovasc Imaging 6:795–802

    Article  PubMed  PubMed Central  Google Scholar 

  33. Franchi F, Ezenekwe A, Wellkamp L et al (2014) Renin inhibition improves the survival of mesenchymal stromal cells in a mouse model of myocardial infarction. J Cardiovasc Transl Res 7:560–569

    Article  PubMed  Google Scholar 

  34. Peterson KM, Aly A, Lerman A et al (2011) Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress. Life Sci 88:65–73

    Article  CAS  PubMed  Google Scholar 

  35. Garcia-Ruiz C, Colell A, Morales A et al (1995) Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes. Mol Pharmacol 48:825–834

    CAS  PubMed  Google Scholar 

  36. Fujii Y, Johnson ME, Gores GJ (1994) Mitochondrial dysfunction during anoxia/reoxygenation injury of liver sinusoidal endothelial cells. Hepatology 20:177–185

    CAS  PubMed  Google Scholar 

  37. Goossens V, Grooten J, De Vos K, Fiers W (1995) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A 92:8115–8119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Folmes CD, Martinez-Fernandez A, Perales-Clemente E et al (2013) Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS. Stem Cells 31:1298–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen TL, Zhu GL, Wang JA et al (2014) Apoptosis of bone marrow mesenchymal stem cells caused by hypoxia/reoxygenation via multiple pathways. Int J Clin Exp Med 7:4686–4697

    PubMed  PubMed Central  Google Scholar 

  40. Nie Y, Han BM, Liu XB et al (2011) Identification of microRNAs involved in hypoxia- and serum deprivation-induced apoptosis in mesenchymal stem cells. Int J Biol Sci 7:762–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun X, Fang B, Zhao X et al (2014) Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS ONE 9(3):e90667. doi:10.1371/journal.pone.0090667

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. J Biomed Sci 16:98–14

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rodriguez-Porcel M, Gheysens O, Chen IY et al (2005) Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. Mol Ther 12:1142–1147

    Article  CAS  PubMed  Google Scholar 

  45. Hou D, Youssef EA, Brinton TJ et al (2005) Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112:I150–6

    PubMed  Google Scholar 

  46. Tong V, Teng XW, Chang TK, Abbott FS (2005) Valproic acid II: effects on oxidative stress, mitochondrial membrane potential, and cytotoxicity in glutathione-depleted rat hepatocytes. Toxicol Sci 86:436–443

    Article  CAS  PubMed  Google Scholar 

  47. Terrovitis J, Kwok KF, Lautamaki R et al (2008) Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 52:1652–1660

    Article  PubMed  Google Scholar 

  48. Chen IY, Gheysens O, Li Z et al (2013) Noninvasive imaging of hypoxia-inducible factor-1alpha gene therapy for myocardial ischemia. Hum Gene Ther Methods 24:279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Iyer M, Wu L, Carey M et al (2001) Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci U S A 98:14595–14600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Iyer M, Annala A et al (2006) Noninvasive indirect imaging of vascular endothelial growth factor gene expression using bioluminescence imaging in living transgenic mice. Physiol Genomics 24:173–180

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Institutes of Health awards R56 HL113371 (MR-P) and RO1CA161091 (RP). We acknowledge the Todd and Karen Wanek Family Program for Hypoplastic Left Heart Syndrome for the assistance with the metabolic analysis of stem cells (Seahorse experiments). The luminometer used was obtained through a grant from Turner Biosystems, Sunnyvale, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rodriguez-Porcel.

Ethics declarations

Conflict of Interest. The authors declare that they have no conflict of interest.

Ethical Approval. All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Federico Franchi and Karen M. Peterson contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franchi, F., Peterson, K.M., Paulmurugan, R. et al. Noninvasive Monitoring of the Mitochondrial Function in Mesenchymal Stromal Cells. Mol Imaging Biol 18, 510–518 (2016). https://doi.org/10.1007/s11307-016-0929-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0929-x

Key words

Navigation