Skip to main content
Log in

The Myocardial Microenvironment Modulates the Biology of Transplanted Mesenchymal Stem Cells

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The maximal efficacy of cell therapy depends on the survival of stem cells, as well as on the phenotypic and biologic changes that may occur on these cells after transplantation. It has been hypothesized that the post-ischemic myocardial microenvironment can play a critical role in these changes, potentially affecting the survival and reparative potential of mesenchymal stem cells (MSCs). Here, we use a dual reporter gene sensor for the in vivo monitoring of the phenotype of MSCs and study their therapeutic effect on cardiac function.

Procedures

The mitochondrial sensor was tested in cell culture in response to different mitochondrial stressors. For in vivo testing, MSCs (3 × 105) were delivered in a murine ischemia-reperfusion (IR) model. Bioluminescence imaging was used to assess the mitochondrial biology and the viability of transplanted MSCs, while high-resolution ultrasound provided a non-invasive analysis of cardiac contractility and dyssynchrony.

Results

The mitochondrial sensor showed increased activity in response to mitochondrial stressors. Furthermore, when tested in the living subject, it showed a significant increase in mitochondrial dysfunction in MSCs delivered in IR, compared with those delivered under sham conditions. Importantly, MSCs delivered to ischemic hearts, despite their mitochondrial stress and poor survival, were able to induce a significant improvement in cardiac function, through decreased collagen deposition and resynchronization/contractility of left ventricular wall motion.

Conclusions

The ischemic myocardium induces changes in the phenotype of transplanted MSCs. Despite their limited survival, MSCs still elicit a certain therapeutic response, as evidenced by improvement in myocardial remodeling and cardiac function. Maximization of the survival and reparative efficacy of stem cells remains a key for the success of stem cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Writing Group Members, Mozaffarian D, Benjamin EJ et al (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:e38–e360

  2. Terzic A, Behfar A (2014) Regenerative heart failure therapy headed for optimization. Eur Heart J 35:1231–1234

    Article  Google Scholar 

  3. Gersh BJ, Simari RD, Behfar A et al (2011) Cardiac cell repair therapy: a clinical perspective. Mayo Clin Proceed 84:876–892

    Article  Google Scholar 

  4. Terzic A, Harper CM, Gores GJ, Pfenning MA (2013) Regenerative medicine blueprint. Stem Cells Devt 22(Suppl 1):20–24

    Article  Google Scholar 

  5. Mazo M, Araña M, Pelacho B, Prósper F (2012) Mesenchymal stem cells and cardiovascular disease: a bench to bedside roadmap. Stem Cells Int 2012:1–11

    Article  Google Scholar 

  6. Sheikh AY, Huber BC, Narsinh KH et al (2012) In vivo functional and transcriptional profiling of bone marrow stem cells after transplantation into ischemic myocardium. Arterioscl Throm Vasc Biol 32:92–102

    Article  CAS  Google Scholar 

  7. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  Google Scholar 

  8. Assmus B, Honold J, Schächinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. New Engl J Med 355:1222–1232

    Article  CAS  Google Scholar 

  9. Chen S-L, Fang W-W, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95

    Article  Google Scholar 

  10. Mazo M, Gavira JJ, Abizanda G, Moreno C, Ecay M, Soriano M, Aranda P, Collantes M, Alegría E, Merino J, Peñuelas I, García Verdugo JM, Pelacho B, Prósper F (2010) Transplantation of mesenchymal stem cells exerts a greater long-term effect than bone marrow mononuclear cells in a chronic myocardial infarction model in rat. Cell Transplant 19:313–328

    Article  Google Scholar 

  11. Gyöngyösi M, Wojakowski W, Lemarchand P, Lunde K, Tendera M, Bartunek J, Marban E, Assmus B, Henry TD, Traverse JH, Moyé LA, Sürder D, Corti R, Huikuri H, Miettinen J, Wöhrle J, Obradovic S, Roncalli J, Malliaras K, Pokushalov E, Romanov A, Kastrup J, Bergmann MW, Atsma DE, Diederichsen A, Edes I, Benedek I, Benedek T, Pejkov H, Nyolczas N, Pavo N, Bergler-Klein J, Pavo IJ, Sylven C, Berti S, Navarese EP, Maurer G, ACCRUE Investigators (2015) Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res 116:1346–1360

    Article  Google Scholar 

  12. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B, Ganser A, Drexler H (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113:1287–1294

    Article  Google Scholar 

  13. Sun X, Fang B, Zhao X et al (2014) Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS One 9:e90667

    Article  Google Scholar 

  14. Beegle J, Lakatos K, Kalomoiris S, Stewart H, Isseroff RR, Nolta JA, Fierro FA (2015) Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells 33:1818–1828

    Article  CAS  Google Scholar 

  15. Franchi F, Ezenekwe A, Wellkamp L et al (2014) Renin inhibition improves the survival of mesenchymal stromal cells in a mouse model of myocardial infarction. Journal of Cardiovascular Transl Res 7:560–569

    Article  Google Scholar 

  16. Don CW, Murry CE (2013) Improving survival and efficacy of pluripotent stem cell-derived cardiac grafts. J Cell Mol Med 17:1355–1362

    Article  CAS  Google Scholar 

  17. Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Med 9:1195–1201

    Article  CAS  Google Scholar 

  18. Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111:1208–1221

    Article  CAS  Google Scholar 

  19. Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39:443–455

    Article  CAS  Google Scholar 

  20. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  Google Scholar 

  21. Franchi F, Peterson KM, Paulmurugan R, Folmes C, Lanza IR, Lerman A, Rodriguez-Porcel M (2016) Noninvasive monitoring of the mitochondrial function in mesenchymal stromal cells. Mol Imaging Biol 18:510–518

    Article  CAS  Google Scholar 

  22. Psaltis PJ, Peterson KM, Xu R et al (2013) Noninvasive monitoring of oxidative stress in transplanted mesenchymal stromal cells. JACC Cardiovasc Imaging 6:795–802

    Article  Google Scholar 

  23. Franchi F, Rodriguez-Porcel M (2017) Noninvasive assessment of cell fate and biology in transplanted mesenchymal stem cells. Methods Mol Biol 1553:227–239

    Article  CAS  Google Scholar 

  24. Psaltis PJ, Simari RD, Rodriguez-Porcel M (2011) Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. Eur J Nucl Med Mol Imaging 39:165–181

    Article  Google Scholar 

  25. Rodriguez-Porcel M (2010) In vivo imaging and monitoring of transplanted stem cells: clinical applications. Curr Cardiol Rep 12:51–58

    Article  Google Scholar 

  26. Wu JC (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108:1302–1305

    Article  Google Scholar 

  27. Yamada S, Nelson TJ, Kane GC et al (2013) Induced pluripotent stem cell intervention rescues ventricular wall motion disparity, achieving biological cardiac resynchronization post-infarction. J Physiol 591:4335–4349

    Article  CAS  Google Scholar 

  28. Nguyen PK, Riegler J, Wu JC (2014) Stem cell imaging: from bench to bedside. Stem Cell 14:431–444

    CAS  Google Scholar 

  29. Peterson KM, Aly A, Lerman A et al (2011) Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress. Life Sci 88:65–73

    Article  CAS  Google Scholar 

  30. Aly A, Peterson K, Lerman A, Lerman L, Rodriguez-Porcel M (2011) Role of oxidative stress in hypoxia preconditioning of cells transplanted to the myocardium: a molecular imaging study. J Cardiovasc Surg 52:579–585

    CAS  Google Scholar 

  31. Deschepper M, Oudina K, David B, Myrtil V, Collet C, Bensidhoum M, Logeart-Avramoglou D, Petite H (2011) Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia. J Cell Mol Med 15:1505–1514

    Article  CAS  Google Scholar 

  32. Loening AM, Wu AM, Gambhir SS (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4:641–643

    Article  CAS  Google Scholar 

  33. Yamada S, Arrell DK, Martinez-Fernandez A et al (2015) Regenerative therapy prevents heart failure progression in dyssynchronous nonischemic narrow QRS cardiomyopathy. J Am Heart Assoc. https://doi.org/10.1161/JAHA.114.001614

  34. Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ (2014) Cell therapy for cardiac repair--lessons from clinical trials. Nature Rev Cardiol 11:232–246

    Article  Google Scholar 

  35. Dai W (2005) Allogeneic Mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112:214–223

    Article  Google Scholar 

  36. Tang YL, Zhao Q, Qin X et al (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80:229–236 discussion 236–7

    Article  Google Scholar 

  37. Mishra PK (2008) Bone marrow-derived mesenchymal stem cells for treatment of heart failure: is it all paracrine actions and immunomodulation? J Cardiovasc Med 9:122–128

    Article  Google Scholar 

Download references

Funding

This study was supported financially by National Institutes of Health awards RO1HL119795 (MR-P) and RO1CA161091 (RP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Franchi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franchi, F., Ramaswamy, V., Olthoff, M. et al. The Myocardial Microenvironment Modulates the Biology of Transplanted Mesenchymal Stem Cells. Mol Imaging Biol 22, 948–957 (2020). https://doi.org/10.1007/s11307-019-01470-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01470-y

Key Words

Navigation