Skip to main content
Log in

MicroPET Evaluation of a Hydroxamate-Based MMP Inhibitor, [18F]FB-ML5, in a Mouse Model of Cigarette Smoke-Induced Acute Airway Inflammation

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are the main proteolytic enzymes involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). A radiolabeled MMP inhibitor, [18F]FB-ML5, was prepared, and its in vivo kinetics were tested in a mouse model of pulmonary inflammation. BALB/c mice were exposed for 4 days to cigarette smoke (CS) or air. On the fifth day, a dynamic microPET scan was made with [18F]FB-ML5. Standardized uptake values (PET-SUVmean) were 0.19 ± 0.06 in the lungs of CS-exposed mice (n = 6) compared to 0.11 ± 0.03 (n = 5) in air-exposed controls (p < 0.05), 90 min post-injection MMP-9 levels in bronchoalveolar lavage fluid (BALF) were increased from undetectable level to 4615 ± 1963 pg/ml by CS exposure. Increased MMP expression in a COPD mouse model was shown to lead to increased retention of [18F]FB-ML5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADAM:

A disintegrin and metalloproteinase

BAL:

Bronchoalveolar lavage

BALF:

Bronchoalveolar lavage fluid

COPD:

Chronic obstructive pulmonary disease

CS:

Cigarette smoke

CT:

Computed tomography

ECM:

Extracellular matrix

ELISA:

Enzyme-linked immunosorbent assay

HPLC:

High-performance liquid chromatography

MMP:

Matrix metalloproteinase

MMPI:

Matrix metalloproteinase inhibitor

NIRF:

Near-infrared fluorescence

PBS:

Phosphate-buffered saline

PET:

Positron emission tomography

ROIs:

Regions of interest

RP:

Reversed-phase

SUV:

Standardized uptake value

TFA:

Trifluoroacetic acid

TIMP:

Tissue inhibitor of matrix metalloproteinase

UV:

Ultraviolet

References

  1. Jeffery PK (2001) Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 164:S28–S38

    Article  CAS  PubMed  Google Scholar 

  2. Barnes PJ, Shapiro SD, Pauwels RA (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 22:672–688

    Article  CAS  PubMed  Google Scholar 

  3. MacNee W (2005) Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2:258–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Agusti A, MacNee W (2013) The COPD control panel: towards personalised medicine in COPD. Thorax 68:687–690

    Article  PubMed  Google Scholar 

  5. Barnes PJ (2000) Mechanisms in COPD: differences from asthma. Chest 117:10S–14S

    Article  CAS  PubMed  Google Scholar 

  6. Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  CAS  PubMed  Google Scholar 

  7. Murphy G, Houbrechts A, Cockett MI et al (1991) The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry 30:8097–8102

    Article  CAS  PubMed  Google Scholar 

  8. Murphy G (2011) Tissue inhibitors of metalloproteinases. Genome Biol 12:233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Demedts IK, Brusselle GG, Bracke KR et al (2005) Matrix metalloproteinases in asthma and COPD. Curr Opin Pharmacol 5:257–263

    Article  CAS  PubMed  Google Scholar 

  10. Gueders MM, Foidart J-M, Noel A, Cataldo DD (2006) Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. Eur J Pharmacol 533:133–144

    Article  CAS  PubMed  Google Scholar 

  11. Cataldo D, Munaut C, Noël A et al (2000) MMP-2- and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 123:259–267

    Article  CAS  PubMed  Google Scholar 

  12. Pérez-Rial S, Puerto-nevado L, González-Mangado N, Peces-Barba G (2011) Early detection of susceptibility to acute lung inflammation by molecular imaging in mice exposed to cigarette smoke. Mol Imaging 10:398–405

    PubMed  Google Scholar 

  13. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208

    PubMed  Google Scholar 

  14. Matusiak N, Castelli R, Tuin AW et al (2015) A dual inhibitor of matrix metalloproteinases and a disintegrin and metalloproteinases, [18F]FB-ML5, as a molecular probe for non-invasive MMP/ADAM-targeted imaging. Bioorg Med Chem 23:192–202

  15. Vlahos R, Bozinovski S, Jones JE (2006) Differential protease, innate immunity, and NF-kB induction profiles during lung inflammation induced by subchronic cigarette smoke exposure in mice. Am J Physiol Lung Cell Mol Physiol 290:L931–L945

    Article  CAS  PubMed  Google Scholar 

  16. Van der Toorn M, Slebos D-J, de Bruin HG et al (2013) Critical role of aldehydes in cigarette smoke-induced acute airway inflammation. Respir Res 14:45

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277:2002–2004

    Article  CAS  PubMed  Google Scholar 

  18. Konstantinopoulos PA, Karamouzis MV, Papatsoris AG, Papavassiliou AG (2008) Matrix metalloproteinase inhibitors as anticancer agents. Int J Biochem Cell Biol 40:1156–1168

    Article  CAS  PubMed  Google Scholar 

  19. Beeh KM, Beier J, Kornmann O, Buhl R (2003) Sputum matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and their molar ratio in patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and healthy subjects. Respir Med 97:634–639

    Article  CAS  PubMed  Google Scholar 

  20. Culpitt SV, Rogers DF, Traves SL et al (2005) Sputum matrix metalloproteinases: comparison between chronic obstructive pulmonary disease and asthma. Respir Med 99:703–710

    Article  CAS  PubMed  Google Scholar 

  21. Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5:1317–1327

    Article  CAS  PubMed  Google Scholar 

  22. Masure S, Proost P, Van Damme J, Opdenakker G (1991) Purification and identification of 91-kDa neutrophil gelatinase. Release by the activating peptide interleukin-8. Eur J Biochem 198:391–398

    Article  CAS  PubMed  Google Scholar 

  23. Fiorelli A, Rizzo A, Messina G et al (2012) Correlation between matrix metalloproteinase 9 and [18F]-2-fluoro-2-deoxyglucose-positron emission tomography as diagnostic markers of lung cancer. Eur J Cardiothorac Surg 41:852–860

    Article  PubMed  Google Scholar 

  24. Finlay GA, Russell KJ, McMahon KJ et al (1997) Elevated levels of matrix metalloproteinases in bronchoalveolar lavage fluid of emphysematous patients. Thorax 52:502–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ohnishi K, Takagi M, Kurokawa Y et al (1998) Matrix metalloproteinase-mediated extracellular matrix protein degradation in human pulmonary emphysema. Lab Investig 78:1077–1087

    CAS  PubMed  Google Scholar 

  26. Vignola AM, Riccobono L, Mirabella A et al (1998) Sputum metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis. Am J Respir Crit Care Med 158:1945–1950

    Article  CAS  PubMed  Google Scholar 

  27. Betsuyaku T, Nishimura M, Takeyabu K et al (1999) Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am J Respir Crit Care Med 159:1985–1991

    Article  CAS  PubMed  Google Scholar 

  28. Molet S, Belleguic C, Lena H et al (2005) Increase in macrophage elastase (MMP-12) in lungs from patients with chronic obstructive pulmonary disease. Inflamm Res 54:31–36

    Article  CAS  PubMed  Google Scholar 

  29. Bracke K, Cataldo D, Maes T et al (2005) Matrix metalloproteinase-12 expression in pulmonary dendritic cells of cigarette smoke exposed mice. Int Arch Allergy Immunol 138:169–179

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Dutch Technology Foundation (STW) for financial support (project 08008). The authors would also like to thank Jurgen Sijbesma for his assistance during the scanning procedure, Uilke Brouwer for ex vivo bronchoalveolar lavage, and Renée Gras for differential cell counts.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Matusiak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matusiak, N., van Waarde, A., Rozeveld, D. et al. MicroPET Evaluation of a Hydroxamate-Based MMP Inhibitor, [18F]FB-ML5, in a Mouse Model of Cigarette Smoke-Induced Acute Airway Inflammation. Mol Imaging Biol 17, 680–687 (2015). https://doi.org/10.1007/s11307-015-0847-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0847-3

Key words

Navigation