Skip to main content

Advertisement

Log in

PET Imaging of Cardiac Wound Healing Using a Novel [68Ga]-Labeled NGR Probe in Rat Myocardial Infarction

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Peptides containing the asparagine-glycine-arginine (NGR) motif bind to aminopeptidase N (CD13), which is expressed on inflammatory cells, endothelial cells, and fibroblasts. It is unclear whether radiolabeled NGR-containing tracers could be used for in vivo imaging of the early wound-healing phase after myocardial infarction (MI) using positron emission tomography (PET).

Procedures

Uptake of novel tracer [68Ga]NGR was assessed together with [68Ga]arginine-glycine-aspartic acid ([68Ga]RGD) and 2-deoxy-2-[18 F]fluoro-d-glucose after myocardial ischemia/reperfusion (MI/R) injury using μ-PET and autoradiography, and relative expressions of CD13 and integrin β3 were assessed in fibroblasts, inflammatory cells, and endothelial cells by immunohistochemistry.

Results

In the infarcted myocardium, uptake of [68Ga]NGR was maximal from days 3 to 7 after MI/R, and correlated with fibroblast and inflammatory cell infiltration as well as [68Ga]RGD uptake.

Conclusions

[68Ga]NGR allows noninvasive and sequential determination of CD13 expression in fibroblasts and inflammatory cells by PET. This will facilitate monitoring of CD13 in the individual wound healing processes, allowing patient-specific therapies to improve outcome after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

MI:

Myocardial infarction

LV:

Left ventricular

NGR:

Asparagine-glycine-arginine

RGD:

Arginine-glycine-aspartic acid

[18 F]FDG:

2-Deoxy-2-[18 F]fluoro-d-glucose

P4H:

Prolyl-4-hydroxylase β

PET:

Positron emission tomography

NOTA:

1,4,7-Triazacyclononane-1,4,7-triacetic acid

References

  1. Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Virag JI, Murry CE (2003) Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am J Pathol 163:2433–2440

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fraccarollo D, Galuppo P, Bauersachs J (2012) Novel therapeutic approaches to post-infarction remodelling. Cardiovasc Res 94:293–303

    Article  CAS  PubMed  Google Scholar 

  4. Bengel FM, George RT, Schuleri KH et al (2013) Image-guided therapies for myocardial repair: concepts and practical implementation. Eur Heart J Cardiovasc Imaging 14:741–751

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gaertner FC, Kessler H, Wester HJ et al (2012) Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging 39(Suppl 1):S126–S138

    Article  PubMed  Google Scholar 

  6. van den Borne SWM, Isobe S, Verjans JW et al (2008) Molecular Imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol 52:2017–2028

    Article  PubMed  Google Scholar 

  7. Pichler BJ, Kneilling M, Haubner R et al (2005) Imaging of delayed-type hypersensitivity reaction by PET and 18 F-galacto-RGD. J Nucl Med 46:184–189

    PubMed  Google Scholar 

  8. Cao Q, Cai W, Li ZB et al (2007) PET imaging of acute and chronic inflammation in living mice. Eur J Nucl Med Mol Imaging 34:1832–1842

    Article  PubMed  Google Scholar 

  9. Pasqualini R, Koivunen E, Kain R et al (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727

    CAS  PubMed  Google Scholar 

  10. Oostendorp M, Douma K, Wagenaar A et al (2010) Molecular magnetic resonance imaging of myocardial angiogenesis after acute myocardial infarction. Circulation 121:775–783

    Article  CAS  PubMed  Google Scholar 

  11. Buehler A, van Zandvoort MAMJ, Stelt BJ et al (2006) cNGR: a novel homing sequence for CD13/APN targeted molecular imaging of murine cardiac angiogenesis in vivo. Arterioscler Thromb Vasc Biol 26:2681–2687

    Article  CAS  PubMed  Google Scholar 

  12. Mina-Osorio P, Winnicka B, O'Conor C et al (2008) CD13 is a novel mediator of monocytic/endothelial cell adhesion. J Leukoc Biol 84:448–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pereira FE, Cronin C, Ghosh M et al (2013) CD13 is essential for inflammatory trafficking and infarct healing following permanent coronary artery occlusion in mice. Cardiovasc Res 100:74–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Look AT, Ashmun RA, Shapiro LH, Peiper SC (1989) Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N. J Clin Investig 83:1299–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Reilkoff RA, Bucala R, Herzog EL (2011) Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol 11:427–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Pilling D, Fan T, Huang D et al (2009) Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 4:e7475

    Article  PubMed Central  PubMed  Google Scholar 

  17. Atherton AJ, Monaghan P, Warburton MJ, Gusterson BA (1992) Immunocytochemical localization of the ectoenzyme aminopeptidase N in the human breast. J Histochem Cytochem 40:705–710

    Article  CAS  PubMed  Google Scholar 

  18. Lai A, Ghaffari A, Ghahary A (2010) Inhibitory effect of anti-aminopeptidase N/CD13 antibodies on fibroblast migration. Mol Cell Biochem 343:191–199

    Article  CAS  PubMed  Google Scholar 

  19. Ghaffari A, Li Y, Kilani RT, Ghahary A (2010) 14-3-3 sigma associates with cell surface aminopeptidase N in the regulation of matrix metalloproteinase-1. J Cell Sci 123:2996–3005

    Article  CAS  PubMed  Google Scholar 

  20. Petrovic N, Schacke W, Gahagan JR et al (2007) CD13/APN regulates endothelial invasion and filopodia formation. Blood 110:142–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Matteo PD, Arrigoni GL, Alberici L et al (2011) Enhanced expression of CD13 in vessels of inflammatory and neoplastic tissues. J Histochem Cytochem 59:47–59

    Article  PubMed Central  PubMed  Google Scholar 

  22. Frantz S, Adamek A, Fraccarollo D et al (2009) The eNOS enhancer AVE 9488: a novel cardioprotectant against ischemia reperfusion injury. Basic Res Cardiol 104:773–779

    Article  CAS  PubMed  Google Scholar 

  23. Leal S, Diniz C, Sa C et al (2006) Semiautomated computer-assisted image analysis to quantify 3,3′-diaminobenzidine tetrahydrochloride-immunostained small tissues. Anal Biochem 357:137–143

    Article  CAS  PubMed  Google Scholar 

  24. Menichetti L, Kusmic C, Panetta D et al (2013) MicroPET/CT imaging of αvβ3 integrin via a novel 68Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction. Eur J Nucl Med Mol Imaging 40:1265–1274

    Article  CAS  PubMed  Google Scholar 

  25. Guendjev Z (1977) Experimental myocardial infarction of the rat and stimulation of the revascularization by the flavonoid drug crataemon. Arzneimittelforschung 27:1576–1579

    CAS  PubMed  Google Scholar 

  26. Mollmann H, Nef HM, Kostin S et al (2006) Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res 71:661–671

    Article  PubMed  Google Scholar 

  27. Lee WW, Marinelli B, van der Laan AM et al (2012) PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 59:153–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Reshef A, Shirvan A, Akselrod-Ballin A, Wall A, Ziv I (2010) Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med 51:837–840

    Article  CAS  PubMed  Google Scholar 

  29. Dilsizian V, Zynda TK, Petrov A et al (2012) Molecular imaging of human ACE-1 expression in transgenic rats. JACC Cardiovasc Imaging 5:409–418

    Article  PubMed  Google Scholar 

  30. Su H, Spinale FG, Dobrucki LW et al (2005) Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 112:3157–3167

    Article  CAS  PubMed  Google Scholar 

  31. Wu JC, Chen IY, Wang Y et al (2004) Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation 110:685–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dijkgraaf I, Van de Vijver P, Dirksen A, Hackeng TM (2013) Synthesis and application of cNGR-containing imaging agents for detection of angiogenesis. Bioorg Med Chem 21:3555–3564

    Article  CAS  PubMed  Google Scholar 

  33. Curnis F, Arrigoni G, Sacchi A et al (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62:867–874

    CAS  PubMed  Google Scholar 

  34. Ozawa MG, Zurita AJ, Dias-Neto E et al (2008) Beyond receptor expression levels: the relevance of target accessibility in ligand-directed pharmacodelivery systems. Trends Cardiovasc Med 18:126–132

    Article  CAS  PubMed  Google Scholar 

  35. Chen K, Ma W, Li G et al (2013) Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression. Mol Pharm 10:417–427

    Article  CAS  PubMed  Google Scholar 

  36. Notni J, Pohle K, Wester HJ (2013) Be spoilt for choice with radiolabelled RGD peptides: preclinical evaluation of (6)(8)Ga-TRAP(RGD)(3). Nucl Med Biol 40:33–41

    Article  CAS  PubMed  Google Scholar 

  37. Meoli DF, Sadeghi MM, Krassilnikova S et al (2004) Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Investig 113:1684–1691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Higuchi T, Bengel FM, Seidl S et al (2008) Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res 78:395–403

    Article  CAS  PubMed  Google Scholar 

  39. Sherif HM, Saraste A, Nekolla SG et al (2012) Molecular imaging of early αvβ3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. J Nucl Med 53:318–323

    Article  CAS  PubMed  Google Scholar 

  40. Dimastromatteo J, Riou LM, Ahmadi M et al (2010) In vivo molecular imaging of myocardial angiogenesis using the αvβ3 integrin-targeted tracer 99mTc-RAFT-RGD. J Nucl Cardiol 17:435–443

    Article  PubMed  Google Scholar 

  41. Verjans J, Wolters S, Laufer W et al (2010) Early molecular imaging of interstitial changes in patients after myocardial infarction: comparison with delayed contrast-enhanced magnetic resonance imaging. J Nucl Cardiol 17:1065–1072

    Article  PubMed Central  PubMed  Google Scholar 

  42. Makowski MR, Ebersberger U, Nekolla S, Schwaiger M (2008) In vivo molecular imaging of angiogenesis, targeting alphavbeta3 integrin expression, in a patient after acute myocardial infarction. Eur Heart J 29:2201–2201

    Article  PubMed  Google Scholar 

  43. Razavian M, Marfatia R, Mongue-Din H et al (2011) Integrin-targeted imaging of inflammation in vascular remodeling. Arterioscler Thromb Vasc Biol 31:2820–2826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Annette Berbner, Charlotte Dienesch, Paula Arias, Katja Hirsch, and Annemieke Klan for expert technical assistance. This work was supported by grants from the Interdisciplinary Clinical Research Center Würzburg (to J.T., J.B. and S.S.: IZKF E-140).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Tillmanns.

Additional information

The authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 5895 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tillmanns, J., Schneider, M., Fraccarollo, D. et al. PET Imaging of Cardiac Wound Healing Using a Novel [68Ga]-Labeled NGR Probe in Rat Myocardial Infarction. Mol Imaging Biol 17, 76–86 (2015). https://doi.org/10.1007/s11307-014-0751-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0751-2

Key words

Navigation