Skip to main content

Advertisement

Log in

Syntheses and Radiosyntheses of Two Carbon-11 Labeled Potent and Selective Radioligands for Imaging Vesicular Acetylcholine Transporter

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The vesicular acetylcholine transporter (VAChT) is a specific biomarker for imaging presynaptic cholinergic neurons. The syntheses and C-11 labeling of two potent enantiopure VAChT inhibitors are reported here.

Procedures

Two VAChT inhibitors, (±)-2 and (±)-6, were successfully synthesized. A chiral HPLC column was used to resolve the enantiomers from each corresponding racemic mixture for in vitro characterization. The radiosyntheses of (−)-[11C]2 and (−)-[11C]6 from the corresponding desmethyl phenol precursor was accomplished using [11C]methyl iodide or [11C]methyl triflate, respectively.

Results

The synthesis of (−)-[11C]2 was accomplished with 40–50 % radiochemical yield (decay-corrected), SA > 480 GBq/μmol (EOB), and radiochemical purity >99 %. Synthesis of (−)-[11C]6 was accomplished with 5–10 % yield, SA > 140 GBq/μmol (EOB), and radiochemical purity >97 %. The radiosynthesis and dose formulation of each tracer was completed in 55–60 min.

Conclusions

Two potent enantiopure VAChT ligands were synthesized and 11C-labeled with good radiochemical yield and specific activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

Anal:

Analysis

BBB:

Brain–blood barrier

BOC:

t-butoxycarbonyl

BOPCl:

Bis(2-oxo-3-oxazolidinyl)-phosphinic chloride

Bq:

Becquerel

Calcd.:

Calculated

m-CPBA:

m-chloroperoxybenzoic acid

DMF:

N,N-dimethylformamide

DMSO:

Dimethylsulfoxide

EOB:

End of bombardment

EOS:

End of synthesis

HPL, C:

High-performance liquid chromatography

IBVM, :

5-Iodobenzovesamicol

PET:

, Positron emission tomography

rt:

Room temperature

SA:

Specific activity

SPECT:

Single-photon emission computed tomography

TLC:

Thin layer chromatography

TMS:

Tetramethylsilane

TFA:

Trifluoroacetic acid

UV:

Ultraviolet

VAChT:

Vesicular acetylcholine transporter

Vesamicol:

Trans-2-(4-phenylpiperidino)cyclohexanol

References

  1. Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113:1625–1644

    Article  CAS  PubMed  Google Scholar 

  2. Hilker R, Thomas AV, Klein JC et al (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65:1716–1722

    Article  CAS  PubMed  Google Scholar 

  3. Gilmor ML, Nash NR, Roghani A et al (1996) Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J Neurosci 16:2179–2190

    CAS  PubMed  Google Scholar 

  4. Prado VF, Martins-Silva C, de Castro BM et al (2006) Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron 51:601–612

    Article  CAS  PubMed  Google Scholar 

  5. Rogers GA, Parsons SM, Anderson DC et al (1989) Synthesis, in vitro acetylcholine-storage-blocking activities, and biological properties of derivatives and analogues of trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol). J Med Chem 32:1217–1230

    Article  CAS  PubMed  Google Scholar 

  6. Widen L, Eriksson L, Ingvar M et al (1992) Positron emission tomographic studies of central cholinergic nerve terminals. Neurosci Lett 136:1–4

    Article  CAS  PubMed  Google Scholar 

  7. Bravo D, Parsons SM (2002) Microscopic kinetics and structure-function analysis in the vesicular acetylcholine transporter. Neurochem Int 41:285–289

    Article  CAS  PubMed  Google Scholar 

  8. Kuhl DE, Koeppe RA, Fessler JA et al (1994) In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM. J Nucl Med 35:405–410

    CAS  PubMed  Google Scholar 

  9. Kuhl DE, Minoshima S, Fessler JA et al (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40:399–410

    Article  CAS  PubMed  Google Scholar 

  10. Albin RL, Cross D, Cornblath WT et al (2003) Diminished striatal [123I]iodobenzovesamicol binding in idiopathic cervical dystonia. Ann Neurol 53:528–532

    Article  PubMed  Google Scholar 

  11. Mazere J, Prunier C, Barret O et al (2008) In vivo SPECT imaging of vesicular acetylcholine transporter using [123I]IBVM in early Alzheimer’s disease. Neuroimaging 40:280–288

    Article  CAS  Google Scholar 

  12. Meikle SR, Kench P, Kassiou M et al (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50:R45–R61

    Article  CAS  PubMed  Google Scholar 

  13. Jung YW, Frey KA, Mulholland GK et al (1996) Vesamicol receptor mapping of brain cholinergic neurons with radioiodine-labeled positional isomers of benzovesamicol. J Med Chem 39:3331–3342

    Article  CAS  PubMed  Google Scholar 

  14. Mulholland GK, Wieland DM, Kilbourn MR et al (1998) [18F]fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse 30:263–274

    Article  CAS  PubMed  Google Scholar 

  15. Efange SM, Khare AB, von Hohenberg K et al (2010) Synthesis and in vitro biological evaluation of carbonyl group-containing inhibitors of vesicular acetylcholine transporter. J Med Chem 53:2825–2835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Giboureau N, Som IM, Boucher-Arnold A et al (2010) PET radioligands for the vesicular acetylcholine transporter (VAChT). Curr Top Med Chem 10:1569–1583

    Article  CAS  PubMed  Google Scholar 

  17. Kilbourn MR, Hockley B, Lee L et al (2009) Positron emission tomography imaging of (2R,3R)-5-[18F]fluoroethoxybenzovesamicol in rat and monkey brain: a radioligand for the vesicular acetylcholine transporter. Nucl Med Biol 36:489–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mach RH, Voytko ML, Ehrenkaufer RL et al (1997) Imaging of cholinergic terminals using the radiotracer [18F](+)-4-fluorobenzyltrozamicol: in vitro binding studies and positron emission tomography studies in nonhuman primates. Synapse 25:368–380

    Article  CAS  PubMed  Google Scholar 

  19. Tu Z, Efange SM, Xu J et al (2009) Synthesis and in vitro and in vivo evaluation of 18F-labeled positron emission tomography (PET) ligands for imaging the vesicular acetylcholine transporter. J Med Chem 52:1358–1369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kawamura K, Shiba K, Tsukada H et al (2006) Synthesis and evaluation of vesamicol analog (−)-O-[11C]methylvesamicol as a PET ligand for vesicular acetylcholine transporter. Ann Nucl Med 20:417–424

    Article  CAS  PubMed  Google Scholar 

  21. Kilbourn MR, Jung YW, Haka MS et al (1990) Mouse brain distribution of a carbon-11 labeled vesamicol derivative: presynaptic marker of cholinergic neurons. Life Sci 47:1955–1963

    Article  CAS  PubMed  Google Scholar 

  22. Petrou M, Frey KA, Kilbourn MR et al (2014) In vivo imaging of human cholinergic nerve terminals with (−)-5-18F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med 55:396–404

    Article  CAS  PubMed  Google Scholar 

  23. Padakanti PK, Zhang X, Jin H, et al (2014) In vitro and in vivo characterization of two C-11 labeled PET tracers for vesicular acetylcholine transporter. Mol Imaging Biol. doi:10.1007/s11307-014-0749-9

  24. Li J, Zhang X, Zhang Z et al (2013) Heteroaromatic and aniline derivatives of piperidines as potent ligands for vesicular acetylcholine transporter. J Med Chem 56:6216–6233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wang W, Cui J, Lu X et al (2011) Synthesis and in vitro biological evaluation of carbonyl group-containing analogues for Sigma-1 receptors. J Med Chem 54:5362–5372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants NS061025, NS075527, and MH092797. The authors thank William H. Margenau and David Ficke in the Cyclotron Facility for radionuclide production. Optical rotation was determined in the laboratory of Dr. Douglas F. Covey in the Department of Molecular Biology and Pharmacology of Washington University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhude Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padakanti, P.K., Zhang, X., Li, J. et al. Syntheses and Radiosyntheses of Two Carbon-11 Labeled Potent and Selective Radioligands for Imaging Vesicular Acetylcholine Transporter. Mol Imaging Biol 16, 765–772 (2014). https://doi.org/10.1007/s11307-014-0748-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0748-x

Key words

Navigation