Skip to main content

Advertisement

Log in

A Mutated Anti-CA19-9 scFv-Fc for Positron Emission Tomography of Human Pancreatic Cancer Xenografts

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Intact antibodies have a long serum persistence resulting in high background signal that inhibits their direct translation as imaging agents. Engineering of antibody fragments through the introduction of mutations in the fragment crystallizable (Fc) region can dramatically reduce serum persistence. We sought to develop a Fc-mutated, anti-CA19-9 antibody fragment (anti-CA 19-9 scFv-Fc H310A) to provide micro-positron emission tomography (microPET) imaging of pancreatic cancer xenografts.

Procedures

The anti-CA19-9 scFv-Fc H310A was successfully expressed and purified. Biochemical characterization included size exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blot, and flow cytometry. The antibody fragment was labeled with iodine-124 (124I) and injected into mice containing human pancreatic cancer xenografts. MicroPET/CT images were then obtained. Blood, organ, and tumor radioactivity was measured and expressed as the percent of injected dose per gram of tissue (%ID/g).

Results

Biochemical characterization was consistent with the creation of a 105 kD dimer containing a human Fc region. Flow cytometry demonstrated antigen-specific binding, and cell-based ELISA further established a dissociation constant (K D) of 10.7 nM. 124I-labeled scFv-Fc H310A localized to the antigen-positive tumor xenografts as detected by microPET. Objective confirmation of targeting was demonstrated by higher %ID/g in the antigen-positive tumor compared to the blood, antigen-negative tumor, and liver.

Conclusions

We successfully engineered and produced an anti-CA19-9 scFv-Fc H310A antibody fragment that retains similar affinity when compared to the parental intact murine antibody. Additionally, our engineered and mutated fragment exhibited antigen-specific microPET imaging of both subcutaneous and orthotopic pancreatic cancer xenografts at early time points secondary to decreased serum half-life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. American Cancer Society (2012) Cancer facts & figures. American Cancer Society, Atlanta

    Google Scholar 

  2. Winter JM, Cameron JL, Campbell KA et al (2006) 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J Gastrointest Surg 10:1199–1210, discussion 1210-1191

    Article  PubMed  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  4. Mancuso A, Calabro F, Sternberg CN (2006) Current therapies and advances in the treatment of pancreatic cancer. Crit Rev Oncol Hematol 58:231–241

    Article  PubMed  Google Scholar 

  5. Richter A, Niedergethmann M, Sturm JW et al (2003) Long-term results of partial pancreaticoduodenectomy for ductal adenocarcinoma of the pancreatic head: 25-year experience. World J Surg 27:324–329

    Article  PubMed  Google Scholar 

  6. Wasif N, Ko CY, Farrell J et al (2010) Impact of tumor grade on prognosis in pancreatic cancer: should we include grade in AJCC staging? Ann Surg Oncol 17:2312–2320

    Article  PubMed  PubMed Central  Google Scholar 

  7. Knowles SM, Wu AM (2012) Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. J Clin Oncol 30:3884–3892

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287

    Article  PubMed  CAS  Google Scholar 

  9. Haglund C, Lindgren J, Roberts PJ, Nordling S (1986) Gastrointestinal cancer-associated antigen CA 19-9 in histological specimens of pancreatic tumours and pancreatitis. Br J Cancer 53:189–195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Loy TS, Sharp SC, Andershock CJ, Craig SB (1993) Distribution of CA 19-9 in adenocarcinomas and transitional cell carcinomas. An immunohistochemical study of 527 cases. Am J Clin Pathol 99:726–728

    PubMed  CAS  Google Scholar 

  11. Makovitzky J (1986) The distribution and localization of the monoclonal antibody-defined antigen 19-9 (CA19-9) in chronic pancreatitis and pancreatic carcinoma. An immunohistochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol 51:535–544

    Article  PubMed  CAS  Google Scholar 

  12. Atkinson BF, Ernst CS, Herlyn M et al (1982) Gastrointestinal cancer-associated antigen in immunoperoxidase assay. Cancer Res 42:4820–4823

    PubMed  CAS  Google Scholar 

  13. Chang TH, Steplewski Z, Sears HF, Koprowski H (1981) Detection of monoclonal antibody-defined colorectal carcinoma antigen by solid-phase binding inhibition radioimmunoassay. Hybridoma 1:37–45

    Article  PubMed  CAS  Google Scholar 

  14. Girgis MD, Olafsen T, Kenanova V et al (2011) CA19-9 as a potential target for radiolabeled antibody-based positron emission tomography of pancreas cancer. Int J Mol Imaging 2011:834515

    Article  PubMed  PubMed Central  Google Scholar 

  15. Girgis MD, Olafsen T, Kenanova V et al (2011) Targeting CEA in pancreas cancer xenografts with a mutated scFv-Fc antibody fragment. EJNMMI Res 1:24

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim JK, Firan M, Radu CG et al (1999) Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn. Eur J Immunol 29:2819–2825

    Article  PubMed  CAS  Google Scholar 

  17. Shields RL, Namenuk AK, Hong K et al (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276:6591–6604

    Article  PubMed  CAS  Google Scholar 

  18. Girgis MD, Kenanova V, Olafsen T et al (2011) Anti-CA19-9 diabody as a PET imaging probe for pancreas cancer. J Surg Res 170:169–178

    Article  PubMed  CAS  Google Scholar 

  19. Wu AM, Yazaki PJ (2000) Designer genes: recombinant antibody fragments for biological imaging. Q J Nucl Med 44:268–283

    PubMed  CAS  Google Scholar 

  20. Kenanova V, Olafsen T, Crow DM et al (2005) Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 65:622–631

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Galfre G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 73:3–46

    Article  PubMed  CAS  Google Scholar 

  22. Yu D, Hung MC (2000) Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 19:6115–6121

    Article  PubMed  CAS  Google Scholar 

  23. Hudis CA (2007) Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    Article  PubMed  CAS  Google Scholar 

  24. Lepin EJ, Leyton JV, Zhou Y et al (2010) An affinity matured minibody for PET imaging of prostate stem cell antigen (PSCA)-expressing tumors. Eur J Nucl Med Mol Imaging 37:1529–1538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Defrise M, Kinahan PE, Townsend DW et al (1997) Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 16:145–158

    Article  PubMed  CAS  Google Scholar 

  26. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  PubMed  Google Scholar 

  27. Wasif N, Bentrem DJ, Farrell JJ et al (2010) Invasive intraductal papillary mucinous neoplasm versus sporadic pancreatic adenocarcinoma: a stage-matched comparison of outcomes. Cancer 116:3369–3377

    Article  PubMed  PubMed Central  Google Scholar 

  28. Picozzi VJ, Abrams RA, Decker PA et al (2011) Multicenter phase II trial of adjuvant therapy for resected pancreatic cancer using cisplatin, 5-fluorouracil, and interferon-alfa-2b-based chemoradiation: ACOSOG Trial Z05031. Ann Oncol 22:348–354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Vaccaro V, Sperduti I, Milella M (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 365:768–769, author reply 769

    Article  PubMed  CAS  Google Scholar 

  30. Junghans RP, Anderson CL (1996) The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A 93:5512–5516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Israel EJ, Wilsker DF, Hayes KC et al (1996) Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 89:573–578

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a VA Carreer Development Award (J Tomlinson) VA0002. Additionally, the authors would like to acknowledge the UCLA Jonsson Comprehensive Cancer Center grant P30 CA016042 and the CFAR grant 5P30 AI028697 for support of the flow cytometry assays performed in this study.

Conflict of Interest

The authors do not have any conflicts of interest to disclose for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Tomlinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochefort, M.M., Girgis, M.D., Knowles, S.M. et al. A Mutated Anti-CA19-9 scFv-Fc for Positron Emission Tomography of Human Pancreatic Cancer Xenografts. Mol Imaging Biol 16, 721–729 (2014). https://doi.org/10.1007/s11307-014-0733-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0733-4

Key Words

Navigation