Skip to main content

Advertisement

Log in

Magnetomotive Optical Coherence Tomography for the Assessment of Atherosclerotic Lesions Using αvβ3 Integrin-Targeted Microspheres

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We investigated the early-stage fatty streaks/plaques detection using magnetomotive optical coherence tomography (MM-OCT) in conjunction with αvβ3 integrin-targeted magnetic microspheres (MSs). The targeting of functionalized MSs was investigated by perfusing ex vivo aortas from an atherosclerotic rabbit model in a custom-designed flow chamber at physiologically relevant pulsatile flow rates and pressures.

Procedures

Aortas were extracted and placed in a flow chamber. Magnetic MS contrast agents were perfused through the aortas and MM-OCT, fluorescence confocal, and bright field microscopy were performed on the ex vivo aorta specimens for localizing the MSs.

Results

The results showed a statistically significant and stronger MM-OCT signal (3.30 ± 1.73 dB) from the aorta segment perfused with targeted MSs, compared with the nontargeted MSs (1.18 ± 0.94 dB) and control (0.78 ± 0.41 dB) aortas. In addition, there was a good co-registration of MM-OCT signals with confocal microscopy.

Conclusions

Early-stage fatty streaks/plaques have been successfully detected using MM-OCT in conjunction with αvβ3 integrin-targeted magnetic MSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  CAS  PubMed  Google Scholar 

  2. Tearney GJ, Waxman S, Shishkov M et al (2008) Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging 1:752–761

    Article  PubMed Central  PubMed  Google Scholar 

  3. Jones MR, Attizzani GF, Given CA 2nd, Brooks WH, Costa MA, Bezerra HG (2012) Intravascular frequency-domain optical coherence tomography assessment of atherosclerosis and stent-vessel interactions in human carotid arteries. AJNR Am J Neuroradiol 33:1494–1501

    Article  CAS  PubMed  Google Scholar 

  4. Farooq MU, Khasnis A, Majid A, Kassab MY (2009) The role of optical coherence tomography in vascular medicine. Vasc Med 14:63–71

    Article  PubMed  Google Scholar 

  5. Boppart SA, Oldenburg AL, Xu C, Marks DL (2005) Optical probes and techniques for molecular contrast enhancement in coherence imaging. J Biomed Opt 10:41208

    Article  PubMed  Google Scholar 

  6. John R, Rezaeipoor R, Adie SG et al (2010) In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes. Proc Natl Acad Sci U S A 107:8085–8090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. John R, Nguyen FT, Kolbeck KJ et al (2012) Targeted multifunctional multimodal protein-shell microspheres as cancer imaging contrast agents. Mol Imaging Biol 14:17–24

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lee TM, Oldenburg AL, Sitafalwalla S et al (2003) Engineered microsphere contrast agents for optical coherence tomography. Opt Lett 28:1546–1548

    Article  CAS  PubMed  Google Scholar 

  9. Au KM, Lu Z, Matcher SJ, Armes SP (2011) Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging. Adv Mater 23:5792–5795

    Article  CAS  PubMed  Google Scholar 

  10. Jefferson A, Wijesurendra RS, McAteer MA et al (2011) Molecular imaging with optical coherence tomography using ligand-conjugated microparticles that detect activated endothelial cells: rational design through target quantification. Atherosclerosis 219:579–587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Oldenburg AL, Toublan FJJ, Suslick KS, Wei A, Boppart SA (2005) Magnetomotive contrast for in vivo optical coherence tomography. Opt Express 13:6597–6614

    Article  PubMed  Google Scholar 

  12. Oldenburg AL, Crecea V, Rinne SA, Boppart SA (2008) Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. Opt Express 16:11525–11539

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Toublan FJ, Boppart SA, Suslick KS (2006) Tumor targeting by surface-modified protein microspheres. J Am Chem Soc 128:3472–3473

    Article  CAS  PubMed  Google Scholar 

  14. Regar E, Leeuwen TGV, Serruys PW (2007) Optical Coherence Tomography in Cardiovascular Research. Informa Healthcare, Oxon, UK, pp 267–280

    Book  Google Scholar 

  15. Tearney GJ, Boppart SA, Bouma BE et al (1996) Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt Lett 21:543–545

    Article  CAS  PubMed  Google Scholar 

  16. Tearney GJ, Brezinski ME, Bouma BE et al (1997) In vivo endoscopic optical biopsy with optical coherence tomography. Science 276:2037–2039

    Article  CAS  PubMed  Google Scholar 

  17. Nadkarni SK, Bouma BE, de Boer J, Tearney GJ (2009) Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods. Lasers Med Sci 24:439–445

    Article  PubMed Central  PubMed  Google Scholar 

  18. Suter MJ, Nadkarni SK, Weisz G et al (2011) Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc Imaging 4:1022–1039

    Article  PubMed Central  PubMed  Google Scholar 

  19. Yoo H, Kim JW, Shishkov M et al (2011) Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med 17:1680–1684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wang Z, Chamie D, Bezerra HG et al (2012) Volumetric quantification of fibrous caps using intravascular optical coherence tomography. Biomed Opt Express 3:1413–1426

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ayers JA, Tang WC, Chen Z (2004) 360° rotating micro mirror for transmitting and sensing optical coherence tomography signals. Proc IEEE Sensors 1:497–500

    Google Scholar 

  22. Liang S, Saidi A, Jing J et al (2012) Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner. J Biomed Opt 17:070501

    PubMed  Google Scholar 

  23. Yang Y, Li X, Wang T et al (2011) Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization. Biomed Opt Express 2:2551–2561

    Article  PubMed Central  PubMed  Google Scholar 

  24. Peng S, Xiong Y, Li K et al (2012) Clinical utility of a microbubble-enhancing contrast ("SonoVue") in treatment of uterine fibroids with high intensity focused ultrasound: a retrospective study. Eur J Radiol 81:3832–3838

    Article  PubMed  Google Scholar 

  25. Paranjape AS, Kuranov R, Baranov S et al (2010) Depth resolved photothermal OCT detection of macrophages in tissue using nanorose. Biomed Opt Express 1:2–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Oh J, Feldman MD, Kim J et al (2008) Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography. J Biomed Opt 13:054006

    Article  PubMed  Google Scholar 

  27. King JL, Miller RJ, Blue JP Jr, O'Brien WD Jr, Erdman JW Jr (2009) Inadequate dietary magnesium intake increases atherosclerotic plaque development in rabbits. Nutr Res 29:343–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Smith BW, Simpson DG, Sarwate S et al (2012) Contrast ultrasound imaging of the aorta alters vascular morphology and circulating von Willebrand factor in hypercholesterolemic rabbits. J Ultrasound Med 31:711–720

    PubMed Central  PubMed  Google Scholar 

  29. Bazzoni G, Ma L, Blue ML, Hemler ME (1998) Divalent cations and ligands induce conformational changes that are highly divergent among beta1 integrins. J Biol Chem 273:6670–6678

    Article  CAS  PubMed  Google Scholar 

  30. Dormond O, Ponsonnet L, Hasmim M, Foletti A, Rüegg C (2004) Manganese-induced integrin affinity maturation promotes recruitment of alpha V beta 3 integrin to focal adhesions in endothelial cells: evidence for a role of phosphatidylinositol 3-kinase and Src. Thromb Haemost 92:151–161

    CAS  PubMed  Google Scholar 

  31. Grinberg O, Hayun M, Sredni B, Gedanken A (2007) Characterization and activity of sonochemically-prepared BSA microspheres containing Taxol–an anticancer drug. Ultrason Sonochem 14:661–666

    Article  CAS  PubMed  Google Scholar 

  32. Olson ES, Whitney MA, Friedman B et al (2012) In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity. Integr Biol (Camb) 4:595–605

    Article  CAS  PubMed Central  Google Scholar 

  33. Crecea V, Oldenburg AL, Liang X, Ralston TS, Boppart SA (2009) Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials. Opt Express 17:23114–23122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Oldenburg AL, Boppart SA (2010) Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography. Phys Med Biol 55:1189–1201

    Article  PubMed Central  PubMed  Google Scholar 

  35. Koniari I, Mavrilas D, Papadaki H et al (2011) Structural and biomechanical alterations in rabbit thoracic aortas are associated with the progression of atherosclerosis. Lipids Health Dis 10:125

    Article  PubMed Central  PubMed  Google Scholar 

  36. Săftoiu A, Vilmann P, Hassan H, Gorunescu F (2006) Analysis of endoscopic ultrasound elastography used for characterisation and differentiation of benign and malignant lymph nodes. Ultraschall Med 27:535–542

    Article  PubMed  Google Scholar 

  37. Plewes DB, Bishop J, Samani A, Sciarretta J (2000) Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys Med Biol 45:1591–1610

    Article  CAS  PubMed  Google Scholar 

  38. Yang VXD, Gordon ML, Mok A et al (2002) Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation. Opt Commun 208:209–214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from the National Institutes of Health (NIBIB R01 EB009073) and a sponsored research agreement with Samsung, Inc. Jongsik Kim was funded by a Carle Foundation Hospital-Beckman Institute fellowship. Adeel Ahmad was funded at the University of Illinois by the NIH National Cancer Institute Alliance for Nanotechnology in Cancer (Midwest Cancer Nanotechnology Training Center) Grant R25-CA154015A.

Disclosures

All other authors declare that they have no conflict of interest except for Stephen A. Boppart who receives royalties from the Massachusetts Institute of Technology for patents related to optical coherence tomography.

Conference presentation

Ahmad A, Kim JS, Li J, et al. Magnetomotive contrast in optical coherence tomography for detecting early-stage atherosclerosis using targeted microspheres, Optical Society of America, Biomedical Optics (BIOMED), Miami, Florida, 29 April–2 May 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Boppart.

Additional information

Jongsik Kim and Adeel Ahmad both contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6.30 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Ahmad, A., Marjanovic, M. et al. Magnetomotive Optical Coherence Tomography for the Assessment of Atherosclerotic Lesions Using αvβ3 Integrin-Targeted Microspheres. Mol Imaging Biol 16, 36–43 (2014). https://doi.org/10.1007/s11307-013-0671-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0671-6

Key words

Navigation