Skip to main content

Advertisement

Log in

Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Acute coronary events such as myocardial infarction are frequently caused by the rupture of unstable atherosclerotic plaque. Collagen plays a key role in determining plaque stability. Methods to measure plaque collagen content are invaluable in detecting unstable atherosclerotic plaques. Recently, novel coherent laser-based imaging techniques, such as polarization-sensitive optical coherence tomography (PSOCT) and laser speckle imaging (LSI) have been investigated, and they provide a wealth of information related to collagen content and plaque stability. Additionally, given their potential for intravascular use, these technologies will be invaluable for improving our understanding of the natural history of plaque development and rupture and, hence, enable the detection of unstable plaques. In this article we review recent developments in these techniques and potential challenges in translating these methods into intra-arterial use in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    Article  CAS  PubMed  Google Scholar 

  2. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  CAS  PubMed  Google Scholar 

  3. Schroeder AP, Falk E (1995) Vulnerable and dangerous coronary plaques. Atherosclerosis 118 [Suppl]:S141–S149

    Article  CAS  PubMed  Google Scholar 

  4. Plenz GA, Deng MC, Robenek H, Volker W (2003) Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis 166:1–11

    Article  CAS  PubMed  Google Scholar 

  5. Newby AC, Zaltsman AB (1999) Fibrous cap formation or destruction—the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 41:345–360

    Article  CAS  PubMed  Google Scholar 

  6. Deguchi JO, Aikawa E, Libby P, Vachon JR, Inada M, Krane SM, Whittaker P, Aikawa M (2005) Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques. Circulation 112:2708–2715

    Article  CAS  PubMed  Google Scholar 

  7. Libby P, Aikawa M (2003) Mechanisms of plaque stabilization with statins. Am J Cardiol 91:4B–8B

    Article  CAS  PubMed  Google Scholar 

  8. Liebson PR, Klein LW (1992) Intravascular ultrasound in coronary atherosclerosis: a new approach to clinical assessment. Am Heart J 123:1643–1660

    Article  CAS  PubMed  Google Scholar 

  9. Rogers WJ, Prichard JW, Hu YL, Olson PR, Benckart DH, Kramer CM, Vido DA, Reichek N (2000) Characterization of signal properties in atherosclerotic plaque components by intravascular MRI. Arterioscler Thromb Vasc Biol 20:1824–1830

    Article  CAS  PubMed  Google Scholar 

  10. Casscells W, Hathorn B, David M, Krabach T, Vaughn WK, McAllister HA, Bearman G, Willerson JT (1996) Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 347:1447–1451

    Article  CAS  PubMed  Google Scholar 

  11. Uchida Y, Fujimori Y, Hirose J, Oshima T (1992) Percutaneous coronary angioscopy. Jpn Heart J 33:271–294

    Article  CAS  PubMed  Google Scholar 

  12. de Korte CL, van der Steen AF, Cespedes EI, Pasterkamp G (1998) Intravascular ultrasound elastography in human arteries: initial experience in vitro. Ultrasound Med Biol 24:401–408

    Article  PubMed  Google Scholar 

  13. Neumeister V, Scheibe M, Lattke P, Jaross W (2002) Determination of the cholesterol-collagen ratio of arterial atherosclerotic plaques using near infrared spectroscopy as a possible measure of plaque stability. Atherosclerosis 165:251–257

    Article  CAS  PubMed  Google Scholar 

  14. van de Poll SWE, Romer TJ, Puppels GJ, van der Laarse A (2002) Raman spectroscopy of atherosclerosis. J Cardiovasc Risk 9:255–261

    PubMed  Google Scholar 

  15. Romer TJ, Brennan JF, Fitzmaurice M, Feldstein ML, Deinum G, Myles JL, Kramer JR, Lees RS, Feld MS (1998) Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy. Circulation 97:878–885

    Article  CAS  PubMed  Google Scholar 

  16. Marcu L, Fang Q, Jo JA, Papaioannou T, Dorafshar A, Reil T, Qiao JH, Baker JD, Freischlag JA, Fishbein MC (2005) In vivo detection of macrophages in a rabbit atherosclerotic model by time-resolved laser-induced fluorescence spectroscopy. Atherosclerosis 181:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Romer TJ, Brennan JF 3rd, Puppels GJ, Zwinderman AH, van Duinen SG, van der Laarse A, van der Steen AF, Bom NA, Bruschke AV (2000) Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler Thromb Vasc Biol 20:478–483

    Article  CAS  PubMed  Google Scholar 

  18. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yabushita H, Bourna BE, Houser SL, Aretz T, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645

    Article  PubMed  Google Scholar 

  20. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE (2003) Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107:113–119

    Article  PubMed  Google Scholar 

  22. van der Meer FJ, Faber DJ, Perree J, Pasterkamp G, Baraznji Sassoon D, van Leeuwen TG (2005) Quantitative optical coherence tomography of arterial wall components. Lasers Med Sci 20:45–51

    Article  PubMed  Google Scholar 

  23. de Boer JF, Milner TE, van Gemert MJC, Nelson JS (1997) Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 22:934–936

    Article  PubMed  Google Scholar 

  24. de Boer JF, Milner TE, Nelson JS (1999) Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Opt Lett 24:300–302

    Article  PubMed  Google Scholar 

  25. Giattina SD, Courtney BK, Herz PR, Harman M, Shortkroff S, Stamper DL, Liu B, Fujimoto JG, Brezinski ME (2006) Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT). Int J Cardiol 107:400–409

    Article  PubMed  Google Scholar 

  26. Cense B, Chen TC, Park BH, Pierce MC, de Boer JF (2004) Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 45:2606–2612

    Article  PubMed  Google Scholar 

  27. Hitzenberger CK, Gotzinger E, Sticker M, Pircher M, Fercher AF (2001) Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt Express 9:780–790

    Article  CAS  PubMed  Google Scholar 

  28. Pierce MC, Strasswimmer J, Park BH, Cense B, de Boer JF (2004) Advances in optical coherence tomography imaging for dermatology. J Invest Dermatol 123:458–463

    Article  CAS  PubMed  Google Scholar 

  29. Burns JA, Zeitels SM, Anderson RR, Kobler JB, Pierce MC, de Boer JF (2005) Imaging the mucosa of the human vocal fold with optical coherence tomography. Ann Otol Rhinol Laryngol 114:671–676

    Article  PubMed  Google Scholar 

  30. Wang XJ, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS (1999) Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt 38:2092–2096

    Article  CAS  PubMed  Google Scholar 

  31. Yao G, Wang LV (1999) Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Opt Lett 24:537–539

    Article  CAS  PubMed  Google Scholar 

  32. Kuo WC, Chou NK, Chou C, Lai CM, Huang HJ, Wang SS, Shyu JJ (2007) Polarization-sensitive optical coherence tomography for imaging human atherosclerosis. Appl Opt 46:2520–2527

    Article  PubMed  Google Scholar 

  33. Saxer CE, de Boer JF, Park BH, Zhao Y, Zhongping C, Nelson JS (2000) High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin. Opt Lett 25:1355–1357

    Article  CAS  PubMed  Google Scholar 

  34. Pierce MC, Park HB, Cense B, de Boer JF (2002) Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography. Opt Lett 27:1534–1536

    Article  PubMed  Google Scholar 

  35. Park BH, Saxer C, Srinivas SM, Nelson JS, de Boer JF (2001) In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J Biomed Opt 6:474–479

    Article  CAS  PubMed  Google Scholar 

  36. Nadkarni SK, Pierce M, Bouma BE, Tearney GJ, de Boer JF (2007) Polarization sensitive optical coherence tomography: detection of vulnerable atherosclerotic plaque. Handbook of optical coherence tomography in cardiovascular research. Informa Healthcare

  37. Nadkarni SK, Pierce MC, Park BH, de Boer JF, Whitaker P, Bouma BE, Bressner JE, Halpern E, Houser S, Tearney GJ (2007) Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol 49:1474–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pierce MC, Shishkov M, Park BH, Nassif NA, Bouma BE, Tearney GJ, de Boer JF (2005) Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography. Opt Express 13:5739–5749

    Article  PubMed  Google Scholar 

  39. Yun SH, Tearney GJ, de Boer JF, Iftima N, Bouma BE (2003) High-speed optical frequency domain imaging. Opt Express 11:2953–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iftimia N, Bouma B, de Boer JF, Park BH, Cense B, Tearney GJ (2004) Adaptive ranging for optical coherence tomography. Opt Express 12:4025–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunn AK, Devor A, Bolay H, Andermann ML, Moskowitz MA, Dale AM, Boas DA (2003) Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt Lett 28:28–30

    Article  CAS  PubMed  Google Scholar 

  42. Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelasticity moduli of complex fluids. Phys Rev Lett 74:1250–1253

    Article  CAS  PubMed  Google Scholar 

  43. Nadkarni SK, Bouma BE, Helg T, Chan R, Halpern E, Chau A, Minsky MS, Motz JT, Houser SL, Tearney GJ (2005) Characterization of atherosclerotic plaques by laser speckle imaging. Circulation 112:885–892

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nadkarni SK, Bilenca A, Bouma BE, Tearney GJ (2006) Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images. J Biomed Opt 11:21006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seemantini K. Nadkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadkarni, S.K., Bouma, B.E., de Boer, J. et al. Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods. Lasers Med Sci 24, 439–445 (2009). https://doi.org/10.1007/s10103-007-0535-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-007-0535-x

Keywords

Navigation