Skip to main content

Advertisement

Log in

Sigma-2 Receptor as Potential Indicator of Stem Cell Differentiation

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The sigma-2 (σ2) receptor is a potential biomarker of proliferative status of solid tumors. Specific synthetic probes using N-substituted-9-azabicyclo [3.3.1]nonan-3α-yl carbamate analogs have been designed and implemented for experimental cancer diagnosis and therapy.

Procedures

We employed the fluorescently labeled σ2 receptor probe, SW120, to evaluate σ2 receptor expression in human stem cells (SC), including: bone marrow stromal, neural progenitor, amniotic fluid, hematopoetic, and embryonic stem cells. We concurrently evaluated the intensity of SW120 and 5-ethynyl-2′-deoxyuridine (EdU) relative to passage number and multi-potency.

Results

We substantiated significantly higher σ2 receptor density among proliferating SC relative to lineage-restricted cell types. Additionally, cellular internalization of the σ2 receptor in SC was consistent with receptor-mediated endocytosis and confocal microscopy indicated SW120 specific co-localization with a fluorescent marker of lysosomes in all SC imaged.

Conclusion

These results suggest that σ2 receptors may serve to monitor stem cell differentiation in future experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HSC:

Hematopoietic stem cell

ESC:

Embryonic stem cell

BMSC:

Bone marrow stromal cell

NPC:

Neural progenitor cell

AFSC:

Amniotic fluid stem cell

CFU:

Colony-forming unit

CFC:

Colony-forming conditions

EdU:

5-ethynyl-2′-deoxyuridine

Ki-67:

Antigen Ki-67 cellular marker of proliferation

PAO:

Phenylarsine oxide

MFI:

Mean fluorescence intensity

σ2 receptor :

Sigma-2 receptor

NBD:

7-Nitrobenzo-2-oxa-1,3-diazole

SW120:

NBD-labeled σ2-receptor -specific ligand

SV119:

Unconjugated σ2 receptor ligand

References

  1. Cao F et al (2009) Noninvasive de novo imaging of human embryonic stem cell-derived teratoma formation. Cancer Res 69(7):2709–2713

    Article  PubMed  CAS  Google Scholar 

  2. Swijnenburg RJ et al (2008) In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells Dev 17(6):1023–1029

    Article  PubMed  CAS  Google Scholar 

  3. Barberi T et al (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 13(5):642–648

    Article  PubMed  CAS  Google Scholar 

  4. Wang H, Chen X (2008) Imaging mesenchymal stem cell migration and the implications for stem cell-based cancer therapies. Future Oncol 4(5):623–628

    Article  PubMed  Google Scholar 

  5. Pomper MG et al (2009) Serial imaging of human embryonic stem-cell engraftment and teratoma formation in live mouse models. Cell Res 19(3):370–379

    Article  PubMed  CAS  Google Scholar 

  6. Choi D et al (2008) Hepatocyte-like cells from human mesenchymal stem cells engrafted in regenerating rat liver tracked with in vivo magnetic resonance imaging. Tissue Eng Part C Methods 14(1):15–23

    Article  PubMed  CAS  Google Scholar 

  7. Morgul MH et al (2008) Tracking of primary human hepatocytes with clinical MRI: initial results with Tat-peptide modified superparamagnetic iron oxide particles. Int J Artif Organs 31(3):252–257

    PubMed  CAS  Google Scholar 

  8. Leiker M et al (2008) Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant 17(8):911–922

    Article  PubMed  Google Scholar 

  9. Lee ES et al (2009) Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging. Stem Cells 27(8):1921–1931

    Article  PubMed  CAS  Google Scholar 

  10. Toma C et al (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98

    Article  PubMed  Google Scholar 

  11. Jackson KA et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107(11):1395–1402

    Article  PubMed  CAS  Google Scholar 

  12. Gallo P et al (2008) A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells. Gene Ther 15(3):161–170

    Article  PubMed  CAS  Google Scholar 

  13. Orban TI et al (2009) Applying a "double-feature" promoter to identify cardiomyocytes differentiated from human embryonic stem cells following transposon-based gene delivery. Stem Cells 27(5):1077–1087

    Article  PubMed  CAS  Google Scholar 

  14. Zhong, J.F., et al., A real-time pluripotency reporter for human stem cells. Stem Cells Dev. 19(1): p. 47–52.

  15. Balakumaran, A., et al., Superparamagnetic iron oxide nanoparticles labeling of bone marrow stromal (mesenchymal) cells does not affect their "stemness". PLoS One. 5(7): p. e11462.

  16. Martin WR et al (1976) The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197(3):517–532

    PubMed  CAS  Google Scholar 

  17. Vangveravong S et al (2006) Synthesis of N-substituted 9-azabicyclo[3.3.1]nonan-3alpha-yl carbamate analogs as sigma2 receptor ligands. Bioorg Med Chem 14(20):6988–6997

    Article  PubMed  CAS  Google Scholar 

  18. Mach RH, Wheeler KT (2009) Development of molecular probes for imaging sigma-2 receptors in vitro and in vivo. Cent Nerv Syst Agents Med Chem 9(3):230–245

    PubMed  CAS  Google Scholar 

  19. Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124(2):195–206

    Article  PubMed  CAS  Google Scholar 

  20. Mach RH et al (1997) Sigma 2 receptors as potential biomarkers of proliferation in breast cancer. Cancer Res 57(1):156–161

    PubMed  CAS  Google Scholar 

  21. Wheeler KT et al (2000) Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br J Cancer 82(6):1223–1232

    Article  PubMed  CAS  Google Scholar 

  22. Kashiwagi H et al (2009) Sigma-2 receptor ligands potentiate conventional chemotherapies and improve survival in models of pancreatic adenocarcinoma. J Transl Med 7:24

    Article  PubMed  Google Scholar 

  23. Mach RH, Dehdashti F, Wheeler KT (2009) PET Radiotracers for imaging the proliferative status of solid tumors. PET Clin 4(1):1–15

    Article  PubMed  Google Scholar 

  24. Scott RE, Wille JJ Jr, Wier ML (1984) Mechanisms for the initiation and promotion of carcinogenesis: a review and a new concept. Mayo Clin Proc 59(2):107–117

    PubMed  CAS  Google Scholar 

  25. Tzen CY et al (1988) Differentiation, cancer, and anticancer activity. Biochem Cell Biol 66(6):478–489

    Article  PubMed  CAS  Google Scholar 

  26. Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9(2):115–128

    Article  PubMed  CAS  Google Scholar 

  27. Flores, I. and M.A. Blasco, The role of telomeres and telomerase in stem cell aging. FEBS Lett. 584(17): p. 3826–30.

  28. Dwyer, R.M. and M.J. Kerin, Mesenchymal stem cells and cancer: tumor-specific delivery vehicles or therapeutic targets? Hum Gene Ther. 21(11): p. 1506–12.

  29. Zeng C et al (2007) Subcellular localization of sigma-2 receptors in breast cancer cells using two-photon and confocal microscopy. Cancer Res 67(14):6708–6716

    Article  PubMed  CAS  Google Scholar 

  30. Kim, H.W., et al., Human Macrophage ATP7A is Localized in the trans-Golgi Apparatus, Controls Intracellular Copper Levels, and Mediates Macrophage Responses to Dermal Wounds. Inflammation.

  31. Gehling UM et al (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95(10):3106–3112

    PubMed  CAS  Google Scholar 

  32. De Coppi P et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106

    Article  PubMed  Google Scholar 

  33. Gerdes J et al (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133(4):1710–1715

    PubMed  CAS  Google Scholar 

  34. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322

    Article  PubMed  CAS  Google Scholar 

  35. Halfon, S., et al., Markers Distinguishing Mesenchymal Stem Cells from Fibroblasts Are Downregulated with Passaging. Stem Cells Dev.

  36. Ostenfeld MS et al (2008) Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy 4(4):487–499

    PubMed  CAS  Google Scholar 

  37. Groth-Pedersen L et al (2007) Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine. Cancer Res 67(5):2217–2225

    Article  PubMed  CAS  Google Scholar 

  38. Crawford KW, Bowen WD (2002) Sigma-2 receptor agonists activate a novel apoptotic pathway and potentiate antineoplastic drugs in breast tumor cell lines. Cancer Res 62(1):313–322

    PubMed  CAS  Google Scholar 

  39. Zeng C et al. Evaluation of 5-ethynyl-2′-deoxyuridine staining as a sensitive and reliable method for studying cell proliferation in the adult nervous system. Brain Res. 1319: p. 21–32.

  40. Lin G et al (2009) Labeling and tracking of mesenchymal stromal cells with EdU. Cytotherapy 11(7):864–873

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Intramural Research Program in the Clinical Center at the National Institutes of Health.

Conflict of interest

The σ2 receptor ligands described in this paper have been licensed from Washington University (RH Mach, inventor) by Isotrace Technologies, Inc., St Charles, MO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jodi L. Haller.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Fig. S1. Phenotypic changes upon long term in vitro culture and differentiation of BMSC. a BMSC passage 2, b BMSC passage 25, c Oil red O positive BMSC following 14 day adipogenesis. Scale bars, 100 μm. Fig. S2. Apoptosis noted upon σ2 receptor binding in tumor cells not evident in BMSC or AFSC. a BMSC, AFSC, NPC, and comparative tumor cell line C6 glioma were incubated with annexin V-Alexa 647 only 15 min, b BMSC, AFSC, NPC, and C6 glioma incubated SW120 10 nmol/L, 30 min, followed by annexinV-Alexa 647, 15 min, c 48-h serum starvation of BMSC, AFSC, NPC and C6 glioma, followed by annexinV-Alexa 647, 15 min, and propidium iodide (10 μg/mL) staining. Bars indicate level fluorescence intensity of unstained cells. Fluorescence detection as follows: FL1-A: SW120, FL2-A: propidium iodide, FL4-A: annexin V-Alexa 647. All samples evaluated with flow cytometry, experiment done in triplicate, values normalized to MFI unstained cells in annexin V binding buffer. Fig. S3. Molecular structures of additional Sigma Receptor-specific ligands. a SV-119, unconjugated σ2 receptor ligand and b (+) pentazocine, σ1 receptor ligand. Fig. S4. Ki-67 biomarker of proliferative status demonstrated similar activity to SW120. Percentage of SW120+ cells in population (white), percentage SW120+/Ki-67 double-positive same population (gray). * denotes BMSC under 14 day adipogenic conditions and MDA-MB435 has been included as reference tumor cell line. Flow cytometric analysis identified the SW120 positive cellular fractions across the indicated SC types as almost exclusively Ki-67 antigen positive. All samples evaluated in triplicate with values normalized to MFI of unstained cells in stain buffer. (PDF 1992 kb)

Table S1

Summary of the assays performed for SC in this study. Not all procedures could be carried out on ESC and HSC because of limited availability of the cell products. *NPC differentiation was performed in chamber slides for the purpose of confocal microscopy SW120/Lysotracker assay only. Normal human astrocyte cultures were substituted for differentiating NPC to astrocytes and were obtained from Lonza (Walkerville, MD) for flow cytometry analysis. HSC differentiation was implemented for flow cytometry assay under semi-solid colony-forming conditions not suitable for confocal imaging. (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller, J.L., Panyutin, I., Chaudhry, A. et al. Sigma-2 Receptor as Potential Indicator of Stem Cell Differentiation. Mol Imaging Biol 14, 325–335 (2012). https://doi.org/10.1007/s11307-011-0493-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0493-3

Key words

Navigation