Skip to main content
Log in

In Vitro Evaluation of Magnetic Resonance Imaging Contrast Agents for Labeling Human Liver Cells: Implications for Clinical Translation

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Magnetic resonance imaging (MRI) is a promising approach for non-invasive monitoring after liver cell transplantation. We compared in vitro labeling of human liver cells with nano-sized (SPIO) and micron-sized iron oxide particles (MPIO).

Procedures

The cellular iron load was quantified and phantom studies were performed using 3.0-T MRI. Transferrin receptor and ferritin gene expression, reactive oxygen species (ROS) formation, transaminase leakage, and urea synthesis were investigated over 6 days.

Results

Incubation with MPIO produced stronger signal extinctions in MRI at similar iron loads within shorter labeling time. MPIO had no negative effects on the cellular iron homeostasis or cell performance, whereas SPIO caused temporary ROS formation and non-physiologic activation of the iron metabolic pathway.

Conclusions

Our findings suggest that MPIO are suited for clinical translation of strategies for cellular imaging with MRI. Attention should be paid to iron release and oxidative stress caused by biodegradable contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fitzpatrick E, Mitry RR, Dhawan A (2009) Human hepatocyte transplantation: state of the art. J Intern Med 266:339–357

    Article  PubMed  CAS  Google Scholar 

  2. Strom SC, Chowdhury JR, Fox IJ (1999) Hepatocyte transplantation for the treatment of human disease. Semin Liver Dis 19:39–48

    Article  PubMed  CAS  Google Scholar 

  3. Allen KJ, Mifsud NA, Williamson R, Bertolino P, Hardikar W (2008) Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transplant 14:688–694

    Article  Google Scholar 

  4. Dhawan A, Mitry RR, Hughes RD et al (2004) Hepatocyte transplantation for inherited factor VII deficiency. Transplantation 78:1812–1814

    Article  PubMed  Google Scholar 

  5. Bulte JW (2009) In vivo MRI cell tracking: clinical studies. AJR Am J Roentgenol 193:314–325

    Article  PubMed  Google Scholar 

  6. Modo M (2008) Noninvasive imaging of transplanted cells. Curr Opin Organ Transplant 13:654–658

    Article  PubMed  Google Scholar 

  7. Puppi J, Modo M (2009) Use of magnetic resonance imaging contrast agents to detect transplanted liver cells. Top Magn Reson Imaging 20:113–120

    Article  PubMed  Google Scholar 

  8. Weissleder R, Cheng HC, Bogdanova A, Bogdanov A Jr (1997) Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 7:258–263

    Article  PubMed  CAS  Google Scholar 

  9. Slotkin JR, Cahill KS, Tharin SA, Shapiro EM (2007) Cellular magnetic resonance imaging: nanometer and micrometer size particles for noninvasive cell localization. Neurotherapeutics 4:428–433

    Article  PubMed  Google Scholar 

  10. Modo M, Meade TJ, Mitry RR (2009) Liver cell labelling with MRI contrast agents. Methods Mol Biol 481:207–219

    PubMed  CAS  Google Scholar 

  11. Morgul MH, Raschzok N, Schwartlander R et al (2008) Tracking of primary human hepatocytes with clinical MRI: initial results with Tat-peptide modified superparamagnetic iron oxide particles. Int J Artif Organs 31:252–257

    PubMed  CAS  Google Scholar 

  12. Raschzok N, Morgul MH, Pinkernelle J et al (2008) Imaging of primary human hepatocytes performed with micron-sized iron oxide particles and clinical magnetic resonance tomography. J Cell Mol Med 12:1384–1394

    Article  PubMed  CAS  Google Scholar 

  13. Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA (2005) A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 18:383–389

    Article  PubMed  CAS  Google Scholar 

  14. Hinds KA, Hill JM, Shapiro EM et al (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102:867–872

    Article  PubMed  CAS  Google Scholar 

  15. Crabbe A, Vandeputte C, Dresselaers T et al (2010) Effects of MRI contrast agents on the stem cell phenotype. Cell Transplant (in press)

  16. Farrel E, Wielopolski P, Pavljasevic P et al (2008) Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo. Biochem Biophys Res Commun 369:1076–1081

    Article  Google Scholar 

  17. Janic B, Iskander AS, Rad AM, Soltanian-Zadeh H, Arbab AS (2008) Effects of ferumoxides-protamine sulfate labeling on immunomodulatory characteristics of macrophage-like THP-1 cells. PLoS ONE 3:e2499

    Article  PubMed  Google Scholar 

  18. Wang L, Deng J, Wang J et al (2009) Superparamagnetic iron oxide does not affect the viability and function of adipose-derived stem cells, and superparamagnetic iron oxide-enhanced magnetic resonance imaging identifies viable cells. Magn Reson Imaging 27:108–119

    Article  PubMed  CAS  Google Scholar 

  19. Nohroudi K, Arnhold S, Berhorn T, Addicks K, Hoehn M, Himmelreich U (2010) In vivo MRI stem cell tracking requires balancing of detection limit and cell viability. Cell Transplant 19(4):431–41

    Article  PubMed  CAS  Google Scholar 

  20. Schäfer R, Ayturan M, Bantleon R et al (2008) The use of clinically approved small particles of iron oxide (SPIO) for labeling of mesenchymal stem cells aggravates clinical symptoms in experimental autoimmune encephalomyelitis and influences their in vivo distribution. Cell Transplant 17:923–941

    Article  PubMed  Google Scholar 

  21. Schäfer R, Kehlbach R, Müller M et al (2009) Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability. Cytotherapy 11:68–78

    Article  PubMed  Google Scholar 

  22. Stroh A, Boltze J, Sieland K et al (2009) Impact of magnetic labeling on human and mouse stem cells and their long-term magnetic resonance tracking in a rat model of Parkinson disease. Mol Imaging 8:166–178

    PubMed  CAS  Google Scholar 

  23. Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202:199–211

    Article  PubMed  CAS  Google Scholar 

  24. Pawelczyk E, Arbab AS, Pandit S, Hu E, Frank JA (2006) Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed 19:581–592

    Article  PubMed  CAS  Google Scholar 

  25. Hubert N, Lescoat G, Sciot R et al (1993) Regulation of ferritin and transferrin receptor expression by iron in human hepatocyte cultures. J Hepatol 18:301–312

    Article  PubMed  CAS  Google Scholar 

  26. Raschzok N, Billecke N, Kammer NN et al (2009) Quantification of cell labeling with micron-sized iron oxide particles using continuum source atomic absorption spectrometry. Tissue Eng Part C Methods 15:681–686

    Article  PubMed  CAS  Google Scholar 

  27. Gu JM, Lim SO, Oh SJ, Yoon SM, Seong JK, Jung G (2008) HBx modulates iron regulatory protein 1-mediated iron metabolism via reactive oxygen species. Virus Res 133:167–177

    Article  PubMed  CAS  Google Scholar 

  28. Bos C, Delmas Y, Desmoulière A et al (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789

    Article  PubMed  Google Scholar 

  29. Cai J, Zhang X, Wang X, Li C, Liu G (2008) In vivo MR imaging of magnetically labeled mesenchymal stem cells transplanted into rat liver through hepatic arterial injection. Contrast Media Mol Imaging 3:61–66

    Article  PubMed  Google Scholar 

  30. Choi D, Kim JH, Lim M et al (2008) Hepatocyte-like cells from human mesenchymal stem cells engrafted in regenerating rat liver tracked with in vivo magnetic resonance imaging. Tissue Eng Part C Methods 14:15–23

    Article  PubMed  CAS  Google Scholar 

  31. Ju S, Teng GJ, Lu H et al (2007) In vivo MR tracking of mesenchymal stem cells in rat liver after intrasplenic transplantation. Radiology 245:206–215

    Article  PubMed  Google Scholar 

  32. Luciani A, Parouchev A, Smirnov P, Clement O et al (2008) In vivo imaging of transplanted hepatocytes with a 1.5-T clinical MRI system–initial experience in mice. Eur Radiol 18:59–69

    Article  PubMed  Google Scholar 

  33. Shapiro EM, Sharer K, Skrtic S, Koretsky AP (2006) In vivo detection of single cells by MRI. Magn Reson Med 55:242–249

    Article  PubMed  Google Scholar 

  34. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Bulte JW, Frank JA (2003) Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76:1123–1130

    Article  PubMed  CAS  Google Scholar 

  35. Schäfer R, Kehlbach R, Wiskirchen J et al (2007) Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide. Radiology 244:514–523

    Article  PubMed  Google Scholar 

  36. Williams JB, Ye Q, Hitchens TK, Kaufman CL, Ho C (2007) MRI detection of macrophages labeled using micrometer-sized iron oxide particles. J Magn Reson Imaging 25:1210–1218

    Article  PubMed  Google Scholar 

  37. Aisen P, Enns C, Wessling-Resnick M (2001) Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 33:940–959

    Article  PubMed  CAS  Google Scholar 

  38. Tong X, Kawabata H, Koeffler HP (2002) Iron deficiency can upregulate expression of transferrin receptor at both the mRNA and protein level. Br J Haematol 116:458–464

    PubMed  CAS  Google Scholar 

  39. Andriopoulos B, Hegedüsch S, Mangin J et al (2007) Sustained hydrogen peroxide induces iron uptake by transferrin receptor-1 independent of the iron regulatory protein/iron-responsive element network. J Biol Chem 282:20301–20308

    Article  PubMed  CAS  Google Scholar 

  40. Hussain SP, Raja K, Amstad PA et al (2000) Increased p53 mutation load in nontumorous human liver of Wilson disease and hemochromatosis: oxyradical overload diseases. Proc Natl Acad Sci USA 97:12770–12705

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Kerstin Nehls and Nora Brunner for the technical assistance, Virginia Ding-Reinelt for the MRI operational assistance, and Dr. Ulrich Gauger for the statistical analysis.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathanael Raschzok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raschzok, N., Muecke, D.A., Adonopoulou, M.K. et al. In Vitro Evaluation of Magnetic Resonance Imaging Contrast Agents for Labeling Human Liver Cells: Implications for Clinical Translation. Mol Imaging Biol 13, 613–622 (2011). https://doi.org/10.1007/s11307-010-0405-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0405-y

Key words

Navigation