Skip to main content
Log in

Volume-Normalized Uptake Rates with Robust Transportability from PET Dual-time and Patlak Analyses

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The intention here is to enhance the usefulness of the Gjedde–Patlak plot of dynamic positron emission tomography (PET) tracer uptake. Two additional parameters closely related to the physiologically significant and diagnostically useful phosphorylation rate k 3 are therefore studied. Additionally, their inter-institutional transportability is examined.

Methods

The two traditional parameters obtained from a Patlak plot are its slope Ki and its usually ignored tissue/plasma (=Q/Cp) axis intercept V. As a useful result, a normalized uptake rate may be defined as k = Ki /V. This is can be theoretically close to k 3. Similar to this an alternative normalized uptake rate is defined as k 3′ = Ki /V ′. Here, V ′ would be a composite of model rate constants, reasonably known a priori, and the measured V so as to depend less on errors in the latter. Parameter determination demonstrations utilize data from the 2-deoxy-2-[F-18]fluoro-D-glucose(FDG)-PET literature.

Results

Using median k i values from 24 FDG dynamic studies and algebraic relationships, on average: k = 1.07k 3 (r = 0.97), and k 3′ = 0.95k 3 (r = 0.91). A skeletal muscle case also demonstrates agreements with k 3. For liver malignancies k and k 3′ can be diagnostically slightly superior to Ki. Unaffected by institutionally dependent Q and Cp calibrations and methods, these can be more robust than Ki in a number of circumstances.

Conclusion

Two studied physiologically meaningful parameters, close to the diagnostically important k 3, can supplement Ki and enhance Patlak analysis by appropriately utilizing normally ignored information. Hitherto, k 3 was obtainable only by complex nonlinear least squares compartmental model analysis. The additional parameters can have more robust inter-institutional transportability than Ki.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hoeskstra CJ, Paglianiti I, Hoekstra OS et al. (2000) Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 27:731-743

    Article  Google Scholar 

  2. Graham MM, Peterson LM, Hayward RM. (2000) Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol 27:647-655

    Article  CAS  PubMed  Google Scholar 

  3. Huang SC. (2000) Anatomy of SUV. Nucl Med Biol 20:643-646

    Article  Google Scholar 

  4. Hunter GJ, Hamberg LM, Alpert NM, Choi NC, Fischman AJ. (1996) Simplified measurement of deoxyglucose utilization rate. J Nucl Med 37:950-955

    CAS  PubMed  Google Scholar 

  5. Shiozaki T, Sadato N, Senda M et al. (2000) Noninvasive estimation of FDG input function for quantification of cerebral metabolic rate of glucose: optimization and multicenter evaluation. J Nucl Med 41:1612-1618

    CAS  PubMed  Google Scholar 

  6. Wong W, Hicks K. (1994) A clinically practical method to acquire parametric images of unidirectional metabolic rates and blood spaces. J Nucl Med 35:1206-1212

    CAS  PubMed  Google Scholar 

  7. Sundaram SK, Freedman NMT, Carrasquillo JA et al. (2004) Simplified kinetic analysis of tumor 18F-FDG uptake: a dynamic approach. J Nucl Med 45:1328-1333

    CAS  PubMed  Google Scholar 

  8. Gjedde A. High- and low-affinity transport of D-glucose from blood to brain. (1981) J Neurochem 36:1463-1471

    Article  CAS  PubMed  Google Scholar 

  9. Patlak CS, Blasberg RG, Fenstermacher JD. (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1-7

    CAS  PubMed  Google Scholar 

  10. Jones HA, Sriskandan S, Peters AM et al. (1997) Dissociation of neutrophil emigration and metabolic activity in lobar pneumonia and bronchiectasis. Eur Resp J 10:795-803

    CAS  Google Scholar 

  11. Chen DL, Mintun MA, Schuster DP. (2004) Comparison of methods to quantitate 18F-FDG uptake with PET during experimental acute lung injury. J Nucl Med 45:1583-1590

    CAS  PubMed  Google Scholar 

  12. Juhasz C, Chugani DC, Muzik O et al. (2006) In vivo uptake and metabolism of α-[11C]methyl-L-tryptophan in human brain tumors. J Cereb Blood Flow Metab 26:345-357

    Article  CAS  PubMed  Google Scholar 

  13. Juhasz C, Muzik O, Lu Xin et al. (2009) Quantification of tryptophan transport and metabolism in lung tumors using PET. J Nucl Med 50:356-363

    Article  CAS  PubMed  Google Scholar 

  14. Thie JA. (2004) Understanding the standardized uptake value (SUV), its methods, and implications for usage. J Nucl Med 45:1431-1434

    PubMed  Google Scholar 

  15. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. (2004) Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 45:1519-1527

    PubMed  Google Scholar 

  16. Park K, Ashlock R, Chang J et al. (2007) High variation in standardized uptake values among PET systems from different manufacturers. J Nucl Med 48:185P

    Google Scholar 

  17. Wang GJ, Volkow ND, Wolf AP et al. (1994) Intersubject variability of brain glucose metabolic measurements in young normal males. J Nucl Med 35:1457-1466

    CAS  PubMed  Google Scholar 

  18. Gjedde A, Wienhard K, Heiss WD et al. (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients with special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab 5:163-178

    CAS  PubMed  Google Scholar 

  19. Bertoldo A, Peltoniemi P, Oikonen V et al. (2001) Kinetic modeling of [18F]FDG in skeletal muscle by PET: a four-compartment five-rate-constant model. Am J Physiol Endocrinol Metab 281:E524-E536

    CAS  PubMed  Google Scholar 

  20. Okazumi S, Isono K, Enomoto K et al. (1992) Evaluation of liver tumors using Fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med 33:333-339

    CAS  PubMed  Google Scholar 

  21. Jagust WJ, Seab JP, Huesman RH et al. (1991) Diminished glucose transport in Alzheimer’s disease: dynamic PET studies. J Cereb Blood Flow Metab 11:323-330

    CAS  PubMed  Google Scholar 

  22. Minn H, Zasadny KR, Quint LE, Wahl RL. (1995) Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology. 196:167-173

    CAS  PubMed  Google Scholar 

  23. Torizuka T, Tamaki N, Inokuma T et al. (1995) In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med 36:1811-1817

    CAS  PubMed  Google Scholar 

  24. Wu HM, Huang SC, Choi Y, Hoh CK, Hawkins RA. (1995) A modeling method to improve quantitation of fluorodeoxyglucose uptake in heterogeneous tumor tissue. J Nucl Med. 36(2):297-306

    CAS  PubMed  Google Scholar 

  25. Torizuka T, Zasadny KR, Recker B, Wahl RL. (1998) Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 207:767-774

    CAS  PubMed  Google Scholar 

  26. Reinhardt M, Beu M, Vosberg H et al. (1999) Quantification of glucose transport and phosphorylation in human skeletal muscle using FDG PET. J Nucl Med 40:977-985

    CAS  PubMed  Google Scholar 

  27. Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M et al. (2001) Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med 42(5):713-720

    CAS  PubMed  Google Scholar 

  28. Graham MM, Muzi M, Spence AM et al. (2002) The FDG lumped constant in normal human brain. J Nucl Med 43:1157-1166

    PubMed  Google Scholar 

  29. Dimitrakopoulou-Strauss A, Strauss LG, Heichel T et al. (2002) The role of quantitative (18)F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 43:510-518

    PubMed  Google Scholar 

  30. Hattori N, Huang SC, Wu HM et al. (2004) Acute changes in regional cerebral (18)F-FDG kinetics in patients with traumatic brain injury. J Nucl Med 45(5):775-783

    PubMed  Google Scholar 

  31. Tseng J, Dunnwald LK, Schubert EK et al. (2004) 18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med 45:1829-1837

    CAS  PubMed  Google Scholar 

  32. Spence AM, Muzi M, Mankoff DA et al. (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45:1653-1659

    PubMed  Google Scholar 

  33. Murakami M, Imahori Y, Kimura S et al. (2005) Positron emission tomography elucidates transport system and tumor proliferation in meningiomas. Oncol Rep 14:853-859

    PubMed  Google Scholar 

  34. Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M et al. (2006) Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using (68)Ga-DOTATOC PET and comparison with (18)F-F-FDG PET. Eur J Nucl Med 33(7):823-830

    Article  Google Scholar 

  35. Wang Y, Chiu E, Rosenberg J, Gambhir SS. (2007) Standardized uptake value atlas: characterization of physiological 2-deoxy-2-[18F]fluoro-D-glucose uptake in normal tissues. Mol Imaging Biol 9:83-90

    Article  PubMed  Google Scholar 

  36. Blasberg RG, Patlak CS, Fenstermacher JD. (1983) Selection of experimental conditions for the accurate determination of blood-brain transfer constants from single-time experiments: a theoretical analysis. J Cereb Blood Flow Metab 3:215-225

    CAS  PubMed  Google Scholar 

  37. Basu S, Habib Z, Houseni M et al. (2007) Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Sem Nucl Med 37:223-239

    Article  Google Scholar 

  38. Gambhir SS, Schwaiger M, Huang SC et al. (1989) Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and Fluorine-18 deoxyglucose. J Nucl Med 30:359-366

    CAS  PubMed  Google Scholar 

  39. Lodge MA, Lucas JD, Marsden PK et al. (1999) A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 26:22-30

    Article  CAS  PubMed  Google Scholar 

  40. Patlak CS, Blasberg RG. (1985) Graphical evaluation of blood-to-brain transfer constant from multiple-time uptake data: generalizations. J Cereb Blood Flow Metab 5:584-590

    CAS  PubMed  Google Scholar 

  41. Boellaard R, Oyen W, Hoekstra CJ et al. (2008) The Netherlands protocol for standardization and quantification of FDG whole body PET studies in multi-center trials. Eur J Nucl Med Mol Imaging 35:2320-2333

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Thie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thie, J.A. Volume-Normalized Uptake Rates with Robust Transportability from PET Dual-time and Patlak Analyses. Mol Imaging Biol 12, 479–487 (2010). https://doi.org/10.1007/s11307-009-0280-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0280-6

Key words

Navigation