Skip to main content
Log in

Longitudinal MicroPET Imaging of Brain Tumor Growth with F-18-labeled RGD Peptide

  • Original Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

EMD 121974, a potent cyclic RGD peptide inhibitor of α v-integrins, demonstrated effectiveness in suppressing brain tumor growth in both preclinical models and phases I/II clinical trials. The ability to non-invasively evaluate α v-integrin expression provides a novel and unique way to better understand brain tumor angiogenesis in relationship to α v-integrin expression, and allow for direct assessment of anti-integrin treatment efficacy.

Procedures

We developed a F-18-labeled RGD peptide [F-18]FB-RGD and performed serial microPET imaging scans to follow brain tumor growth and angiogenesis as a function of time in an orthotopic U87MG glioblastoma xenograft model in athymic nude mice.

Results

The tumor was barely visible on microPET at the size of ≤1.5 mm diameter at which time no angiogenesis was evident on histological examination. When tumor started to grow exponentially by day 35 the activity accumulation in the brain tumor also increased accordingly, with best tumor-to-brain contrast seven weeks after inoculation of 105 U87MG cells into the mice forebrain.

Conclusions

Longitudinal microPET imaging and [F-18]FB-RGD provides the sensitivity and resolution to visualize and quantify anatomical variations during brain tumor growth and angiogenesis, most likely through interaction with α v-integrins expressed on tumor cells and angiogenic tumor vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Tiwari RC, Murray T, et al. (2004) Cancer statistics, 2004. CA Cancer J Clin 54:8–29

    Article  PubMed  Google Scholar 

  2. Boiardi A, Silvani A, Pozzi A, et al. (1997) Advantage of treating anaplastic gliomas with aggressive protocol combining chemotherapy and radiotherapy. J Neuro-Oncol 34:179–185

    Article  CAS  Google Scholar 

  3. Puduvalli VK, Yung AW (1998) New frontiers in therapy of malignant gliomas. Forum 8:261–269

    PubMed  CAS  Google Scholar 

  4. Puduvalli VK, Sawaya R (2000) Antiangiogenesis—therapeutic strategies and clinical implications for brain tumors. J Neuro-Oncol 50:189–200

    Article  CAS  Google Scholar 

  5. Taga T, Suzuki A, Gonzalez-Gomez I, et al. (2002) Alpha(v)-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 98:690–697

    Article  PubMed  CAS  Google Scholar 

  6. MacDonald TJ, Taga T, Shimada H, et al. (2001) Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha-v integrin antagonist. Neurosurgery 48:151–157

    Article  PubMed  CAS  Google Scholar 

  7. Cristofanilli M, Charnsangavej C, Hortobagyi GN (2002) Angiogenesis modulation in cancer research: Novel clinical approaches. Nat Rev Drug Discov 1:415–426

    Article  CAS  Google Scholar 

  8. Anderson SA, Rader RK, Westlin WF, et al. (2000) Magnetic resonance contrast enhancement of neovasculature with α v β 3-targeted nanoparticles. Magn Reson Med 44:433–439

    Article  PubMed  CAS  Google Scholar 

  9. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by α v β 3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  PubMed  CAS  Google Scholar 

  10. Chen X, Park R, Shahinian AH, Bading JR, Conti PS (2004) Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 31:11–19

    Article  PubMed  CAS  Google Scholar 

  11. Chen X, Park R, Shahinian AH, et al. (2004) 18F-labeled RGD peptide: Initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 31:179–189

    Article  PubMed  CAS  Google Scholar 

  12. Chen X, Park R, Tohme M, Shahinian AH, Bading JR, Conti PS (2004) MicroPET and autoradiographic imaging of breast cancer α v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 15:41–49

    Article  PubMed  CAS  Google Scholar 

  13. Chen X, Park R, Hou Y, et al. (2004) MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur J Nucl Med Mol Imaging 31:1081–1089

    Article  PubMed  CAS  Google Scholar 

  14. Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS (2004) MicroPET imaging of α v β 3 integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 3:96–104

    Article  PubMed  CAS  Google Scholar 

  15. Chen X, Hou Y, Tohme M, et al. (2004) PEGylated RGD peptide: 64Cu-labeleing and PET imaging of brain tumor integrin α v β 3 expression. J Nucl Med 45:1776–1783

    PubMed  CAS  Google Scholar 

  16. Chen X, Liu S, Hou Y, et al. (2004) MicroPET imaging of breast cancer α v-integrin expression with 64Cu-labeled dimeric RGD Peptides. Mol Imaging Biol 6:350–359

    Article  PubMed  Google Scholar 

  17. Hauber R, Kuhnast B, Mang C, et al. (2004) [18F]Galacto-RGD: Synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 15:61–69

    Article  PubMed  CAS  Google Scholar 

  18. Haubner R, Wester HJ, Weber WA, et al. (2001) Noninvasive imaging of α v β 3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785

    PubMed  CAS  Google Scholar 

  19. Haubner R, Wester HJ, Burkhart F, et al. (2001) Glycosylated RGD-containing peptides: Tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336

    PubMed  CAS  Google Scholar 

  20. Haubner R, Wester HJ, Reuning U, et al. (1999) Radiolabeled α v β 3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 40:1061–1071

    PubMed  CAS  Google Scholar 

  21. Janssen M, Oyen WJ, Massuger LF, et al. (2002) Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm 17:641–646

    Article  PubMed  CAS  Google Scholar 

  22. Janssen ML, Oyen WJ, Dijkgraaf I, et al. (2002) Tumor targeting with radiolabeled α v β 3 integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151

    PubMed  CAS  Google Scholar 

  23. Van Hagen PM, Breeman WA, Bernard HF, et al. (2000) Evaluation of a radiolabeled cyclic DTPA-RGD analogue for tumor imaging and radionuclide therapy. Int J Cancer 90:186–198

    Article  PubMed  Google Scholar 

  24. Ellegala DB, Leong-Poi H, Carpenter JE, et al. (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to α v β 3. Circulation 108:336–341

    Article  PubMed  Google Scholar 

  25. Greenberg HS, Chandler WF, Sandler HM (1999) Brain Tumors (Contemporary Neurology Series, 54). New York: Oxford University Press.

  26. Spence AM, Muzi M, Krohn KA (2002) Molecular imaging of regional brain tumor biology. J Cell Biochem 39(Suppl):25–35

    Article  CAS  Google Scholar 

  27. Blouw B, Song H, Tihan T (2003) The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4:133–146

    Article  PubMed  CAS  Google Scholar 

  28. Holash J, Maisonpierre PC, Compton D, et al. (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  PubMed  CAS  Google Scholar 

  29. Zagzag D, Amirnovin R, Greco MA, et al. (2000) Vascular apoptosis and involution in gliomas precede neovascularization: A novel concept for glioma growth and angiogenesis. Lab Invest 80:837–849

    PubMed  CAS  Google Scholar 

  30. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  31. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin α v β 3 for angiogenesis. Science 264:569–571

    Article  PubMed  CAS  Google Scholar 

  32. Balaban RS, Hampshire VA (2001) Challenges in small animal noninvasive imaging. ILAR J 42:248–262

    PubMed  CAS  Google Scholar 

  33. Toyama H, Ichise M, Liow JS, et al. (2004) Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31:251–256

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The USC cyclotron team, particularly Joseph Cook and Luis Pedroza are acknowledged for routine [F-18]F production. This work was supported, in part, by National Institute of Biomedical Imaging and Bioengineering (NIBIB) Grant R21 EB001785, Department of Defense (DOD) Breast Cancer Research Program (BCRP) Concept Award DAMD17-03-1-0752, DOD BCRP IDEA Award W81XWH-04-1-0697, DOD Prostate Cancer Research Program (PCRP) New Investigator Award (NIA) DAMD1717-03-1-0143, American Lung Association California (ALAC), the Society of Nuclear Medicine Education and Research Foundation, National Cancer Institute (NCI) Small Animal Imaging Resource Program (SAIRP) grant R24 CA93862, and NCI in vivo Cellular Molecular Imaging Center (ICMIC) grant P50 CA114747.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Park, R., Khankaldyyan, V. et al. Longitudinal MicroPET Imaging of Brain Tumor Growth with F-18-labeled RGD Peptide. Mol Imaging Biol 8, 9–15 (2006). https://doi.org/10.1007/s11307-005-0024-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-005-0024-1

Key words

Navigation