Skip to main content

Advertisement

Log in

Cost-Effectiveness of Positron Emission Tomography in Breast Cancer

  • Original Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

In this study, we used quantitative decision tree modeling to assess the cost-effectiveness of a positron emission tomography (PET)-based management scenario for breast cancer in Canada.

Procedures

Two patient management scenarios were compared (with and without PET). A metaanalysis of studies for the accuracy of PET in staging breast cancer was conducted. Life expectancies were calculated. Management costs were determined from previous cost-effective analyses, management costs from our institutions, and recently published Canadian cost estimates of various procedures.

Results

A cost savings of $695 per person is expected for the PET strategy, with an increase in life expectancy (7.4 days), when compared with the non-PET strategy. This cost savings remained in favor of the PET strategy when subjected to a sensitivity analysis.

Conclusions

The use of a PET management strategy for the staging of breast cancer is expected to remain economically viable in Canada under various economic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. National Cancer Institute of Canada. Canadian Cancer Statistics 2000, Toronto, Canada, 2000.2001; http://www.cancer.ca/stats2000/

  2. Axillary dissection (1998) The Steering Committee on Clinical Practice Guidelines for the Care and Treatment of Breast Cancer. Canadian Association of Radiation Oncologists. Can Med Assoc J 158(Suppl 3):S22–S26. February 10

    Google Scholar 

  3. Roses DF, Brooks AD, Harris MN, Shapiro RL, Mitnick J (1999) Complications of level I and II axillary dissection in the treatment of carcinoma of the breast. Ann Surg 230(2):194–201

    Article  PubMed  CAS  Google Scholar 

  4. Smith IC, Ogston KN, Whitford P, Smith FW, Sharp P, Norton M, Miller ID, Ah-See AK, Heys SD, Jibril JA, Eremin O (1998) Staging of the axilla in breast cancer: Accurate in vivo assessment using positron emission tomography with 2-(fluorine-18)-fluoro-2-deoxy-d-glucose. Ann Surg 228(2):220–227

    Article  PubMed  CAS  Google Scholar 

  5. Sobin LH, Wittekend C (2001) TNM classification of malignant tumours, 5th edn. New York: Wiley

    Google Scholar 

  6. Will BP, Le Petit C, Berthelot JM, Tomiak EM, Verma S, Evans WK (1999) Diagnostic and therapeutic approaches for nonmetastatic breast cancer in Canada, and their associated costs. Br J Cancer 79(9–10):1428–1436

    Article  PubMed  CAS  Google Scholar 

  7. Posner MC, Wolmark N (1994) Indications for breast-preserving surgery and adjuvant therapy in early breast cancer. Int Surg 79(1):43–47

    PubMed  CAS  Google Scholar 

  8. Bombardieri E, Crippa F, Maffioli L, Draisma A, Chiti A, Agresti R, Greco M (1998) Nuclear medicine approaches for detection of axillary lymph node metastases. Q J Nucl Med 42(1):54–65

    PubMed  CAS  Google Scholar 

  9. Fisher B, Redmond C, Fisher ER, Bauer M, Wolmark N, Wickerham DL, Deutsch M, Montague E, Margolese R, Foster R (1985) Ten-year results of a randomized clinical trial comparing radical mastectomy and total mastectomy with or without radiation. N Engl J Med 312(11):674–681. March 14

    Article  PubMed  CAS  Google Scholar 

  10. Fisher B, Montague E, Redmond C, Barton B, Borland D, Fisher ER, Deutsch M, Schwarz G, Margolese R, Donegan W, Volk H, Konvolinka C, Gardner B, Cohn I Jr, Lesnick G, Cruz AB, Lawrence W, Nealon T, Butcher H, Lawton R (1977) Comparison of radical mastectomy with alternative treatments for primary breast cancer. A first report of results from a prospective randomized clinical trial. Cancer 39(6 Suppl):2827–2839

    Article  PubMed  CAS  Google Scholar 

  11. Johnson TP, Ford L, Warnecke RB, Nayfield SG, Kaluzny A, Cutter G, Gillings D, Sondik E, Ozer H (1994) Effect of a National Cancer Institute Clinical Alert on breast cancer practice patterns. J Clin Oncol 12(9):1783–1788

    PubMed  CAS  Google Scholar 

  12. Fisher B, Wolmark N, Bauer M, Redmond C, Gebhardt M (1981) The accuracy of clinical nodal staging and of limited axillary dissection as a determinant of histologic nodal status in carcinoma of the breast. Surg Gynecol Obstet 152(6):765–772

    PubMed  CAS  Google Scholar 

  13. Clinical application and economic implications of PET in the assessment of axillary lymph node involvement in breast cancer: A retrospective study. Abstract from the 1994 ICP Meeting 1994

  14. Recht A, Houlihan MJ (1995) Axillary lymph nodes and breast cancer: A review. Cancer 76(9):1491–1512. November 1

    Article  PubMed  CAS  Google Scholar 

  15. Greco M, Crippa F, Agresti R, Seregni E, Gerali A, Giovanazzi R, Micheli A, Asero S, Ferraris C, Gennaro M, Bombardieri E, Cascinelli N (2001) Axillary lymph node staging in breast cancer by 2-fluoro-2-deoxy-d-glucose-positron emission tomography: Clinical evaluation and alternative management. J Natl Cancer Inst 93(8):630–635. April 18

    Article  PubMed  CAS  Google Scholar 

  16. Minn H, Soini I (1989) [18F]Fluorodeoxyglucose scintigraphy in diagnosis and follow up of treatment in advanced breast cancer. Eur J Nucl Med 15(2):61–66

    Article  PubMed  CAS  Google Scholar 

  17. Tse NY, Hoh CK, Hawkins RA, Zinner MJ, Dahlbom M, Choi Y, Maddahi J, Brunicardi FC, Phelps ME, Glaspy JA (1992) The application of positron emission tomographic imaging with fluorodeoxyglucose to the evaluation of breast disease. Ann Surg 216(1):27–34

    Article  PubMed  CAS  Google Scholar 

  18. Hoh CK, Hawkins RA, Glaspy JA, Dahlbom M, Tse NY, Hoffman EJ, Schiepers C, Choi Y, Rege S, Nitzsche E (1993) Cancer detection with whole-body PET using 2-[18F]fluoro-2-deoxy-d-glucose. J Comput Assist Tomogr 17(4):582–589

    Article  PubMed  CAS  Google Scholar 

  19. Adler LP, Crowe JP, al Kaisi NK, Sunshine JL (1993) Evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2-fluoro-d-glucose PET. Radiology 187(3):743–750

    PubMed  CAS  Google Scholar 

  20. Crowe JP Jr, Adler LP, Shenk RR, Sunshine J (1994) Positron emission tomography and breast masses: Comparison with clinical, mammographic, and pathological findings. Ann Surg Oncol 1(2):132–140

    Article  PubMed  Google Scholar 

  21. Utech CI, Young CS, Winter PF (1996) Prospective evaluation of fluorine-18 fluorodeoxyclucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 23(12):1588–1593

    Article  PubMed  CAS  Google Scholar 

  22. Avril N, Dose J, Janicke F, Ziegler S, Romer W, Weber W, Herz M, Nathrath W, Graeff H, Schwaiger M (1996) Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-d-glucose. J Natl Cancer Inst 88(17):1204–1209. September 4

    Article  PubMed  CAS  Google Scholar 

  23. Adler LP, Faulhaber PF, Schnur KC, Al Kasi NL, Shenk RR (1997) Axillary lymph node metastases: Screening with [F-18]2-deoxy-2-fluoro-d-glucose (FDG) PET. Radiology 203(2):323–327

    PubMed  CAS  Google Scholar 

  24. Noh DY, Yun IJ, Kim JS, Kang HS, Lee DS, Chung JK, Lee MC, Youn YK, Oh SK, Choe KJ (1998) Diagnostic value of positron emission tomography for detecting breast cancer. World J Surg 22(3):223–227

    Article  PubMed  CAS  Google Scholar 

  25. Rostom AY, Powe J, Kandil A, Ezzat A, Bakheet S, el Khwsky F, el Hussainy G, Sorbris R, Sjoklint O (1999) Positron emission tomography in breast cancer: A clinicopathological correlation of results. Br J Radiol 72(863):1064–1068

    PubMed  CAS  Google Scholar 

  26. Hoh CK, Schiepers C, Seltzer MA, Gambhir SS, Silverman DH, Czernin J, Maddahi J, Phelps ME (1997) PET in oncology: Will it replace the other modalities? Semin Nucl Med 27(2):94–106

    Article  PubMed  CAS  Google Scholar 

  27. Conti PS, Lilien DL, Hawley K, Keppler J, Grafton ST, Bading JR (1996) PET and [18F]-FDG in oncology: A clinical update. Nucl Med Biol 23(6):717–735

    Article  PubMed  CAS  Google Scholar 

  28. Miles KA (2001) An approach to demonstrating cost-effectiveness of diagnostic imaging modalities in Australia illustrated by positron emission tomography. Australas Radiol 45(1):9–18

    Article  PubMed  Google Scholar 

  29. Scott WJ, Shepherd J, Gambhir SS (1998) Cost-effectiveness of FDG-PET for staging non-small cell lung cancer: A decision analysis. Ann Thorac Surg 66(6):1876–1883

    Article  PubMed  CAS  Google Scholar 

  30. Dsetlein M, Sheidhauer K, Lautenbach K, Schicha H (2001) Quality criteria for cost–benefit analysis in oncological nuclear medicine. Z Arztl Fortbild Qual Sich 93(1):49–55

    Google Scholar 

  31. Sloka JS, Hollett PD, Mathews M (2004) Cost-effectiveness of positron emission tomography for non-small cell lung carcinoma in Canada. Med Sci Monit 10(5):MT73–MT80

    PubMed  Google Scholar 

  32. Sloka JS, Hollett PD, Mathews M (2004) Cost-effectiveness of positron emission tomography in recurrent colorectal cancer in Canada. McGill J Med 7(2):165–174

    Google Scholar 

  33. Scarth H, Cantin J, Levine M (2002) Clinical practice guidelines for the care and treatment of breast cancer: Mastectomy or lumpectomy? The choice of operation for clinical stages I and II breast cancer (summary of the 2002 update). Can Med Assoc J 167(2):154–155. July 23

    Google Scholar 

  34. Walsh Dicks EL (1999) Surgery for breast cancer in St. John's: The statistics, the surgeon's view, the patient's view. PhD thesis

  35. Zurrida S, Morabito A, Galimberti V, Luini A, Greco M, Bartoli C, Raselli R, Rossi N, Vessecchia G, Cascinelli N, Veronesi U (1999) Importance of the level of axillary involvement in relation to traditional variables in the prognosis of breast cancer. Int J Oncol 15(3):475–480

    PubMed  CAS  Google Scholar 

  36. Mustafa IA, Cole B, Wanebo HJ, Bland KI, Chang HR (1998) Prognostic analysis of survival in small breast cancers. J Am Coll Surg 186(5):562–569

    Article  PubMed  CAS  Google Scholar 

  37. Jackson JS, Olivotto IA, Wai, MDE, Grau C, Mates D, Ragaz J (2000) A decision analysis of the effect of avoiding axillary lymph node dissection in low risk women with invasive breast carcinoma. Cancer 88(8):1852–1862. April 15

    Article  PubMed  CAS  Google Scholar 

  38. Mijnhout GS, Hooft L, van Tulder MW, Deville WL, Teule GJ, Hoekstra OS (2000) How to perform a comprehensive search for FDG-PET literature. Eur J Nucl Med 27(1):91–97

    Article  PubMed  CAS  Google Scholar 

  39. Oxman AD, Cook DJ, Guyatt GH (1994) Users' guides to the medical literature. VI. How to use an overview. Evidence-Based Medicine Working Group. JAMA 272(17):1367–1371. November 2

    Article  PubMed  CAS  Google Scholar 

  40. Gambhir SS (1999) Decision analysis in nuclear medicine. J Nucl Med 40(9):1570–1581

    PubMed  CAS  Google Scholar 

  41. Egger M, Smith GD (1998) Bias in location and selection of studies. Br Med J 316(7124):61–66. January 3

    CAS  Google Scholar 

  42. Fischer BM, Mortensen J, Hojgaard L (2001) Positron emission tomography in the diagnosis and staging of lung cancer: A systematic, quantitative review. Lancet Oncol 2(11):659–666

    Article  PubMed  CAS  Google Scholar 

  43. Gambhir SS, Hoh CK, Phelps ME, Madar I, Maddahi J (1996) Decision tree sensitivity analysis for cost-effectiveness of FDG-PET in the staging and management of non-small-cell lung carcinoma. J Nucl Med 37(9):1428–1436

    PubMed  CAS  Google Scholar 

  44. Schneiderman MA, Axtell LM (1979) Deaths among female patients with carcinoma of the breast treated by a surgical procedure only. Surg Gynecol Obstet 148(2):193–195

    PubMed  CAS  Google Scholar 

  45. Donegan WL, Spratt JS (1995) Cancer of the breast, 4th edn. Philadelphia: Saunders

    Google Scholar 

  46. Bland KI, Klamer TW, Polk HC Jr, Knutson CO (1981) Isolated regional lymph node dissection: Morbidity, mortality and economic considerations. Ann Surg 193(3):372–376

    Article  PubMed  CAS  Google Scholar 

  47. Wolfson MC (1996) Health-adjusted life expectancy. Health Rep 8(1):41–46

    PubMed  CAS  Google Scholar 

  48. Beck JR, Pauker SG, Gottlieb JE, Klein K, Kassirer JP (1982) A convenient approximation of life expectancy (the “DEALE”). II. Use in medical decision-making. Am J Med 73(6):889–897

    Article  PubMed  CAS  Google Scholar 

  49. Hislop TG, Olivotto IA, Coldman AJ, Trevisan CH, Kula J, McGregor GI, Phillips N (1996) Variations in breast conservation surgery for women with axillary lymph node negative breast cancer in British Columbia. Can J Public Health 87(6):390–394

    PubMed  CAS  Google Scholar 

  50. Mansfield CM, Komarnicky LT, Schwartz GF, Rosenberg AL, Krishnan L, Jewell WR, Rosato FE, Moses ML, Haghbin M, Taylor J (1995) Ten-year results in 1,070 patients with stages I and II breast cancer treated by conservative surgery and radiation therapy. Cancer 75(9):2328–2336. May 1

    Article  PubMed  CAS  Google Scholar 

  51. Fisher ER, Sass R, Fisher B (1985) Biologic considerations regardingthe one and two step procedures in the management of patients with invasive carcinoma of the breast. Surg Gynecol Obstet 161(3):245–249

    PubMed  CAS  Google Scholar 

  52. Gambhir SS, Gupta P, Shepherd JE, Allen MA, Hoh C, Maddahi J, Phelps ME (1998) MD@: A physician-friendly decision analysis tool. MD Comput 15(1):40–48

    PubMed  CAS  Google Scholar 

  53. Sox HC (2001) Medical decision making. Boston: Butterworths

    Google Scholar 

  54. Canadian Institute for Health Information (2002) Health Care in Canada. ISBN: 1-55392-018-X. Sept 5

  55. Velanovich V, Szymanski W (1999) Quality of life of breast cancer patients with lymphedema. Am J Surg 177(3):184–187

    Article  PubMed  CAS  Google Scholar 

  56. Carter BJ (1997) Women's experiences of lymphedema. Oncol Nurs Forum 24(5):875–882

    PubMed  CAS  Google Scholar 

  57. Ververs JM, Roumen RM, Vingerhoets AJ, Vreugdenhil G, Coebergh JW, Crommelin MA, Luiten EJ, Repelaer van Driel OJ, Schijven M, Wissing JC, Voogd AC (2001) Risk, severity and predictors of physical and psychological morbidity after axillary lymph node dissection for breast cancer. Eur J Cancer 37(8):991–999

    Article  PubMed  CAS  Google Scholar 

  58. Hack TF, Cohen L, Katz J, Robson LS, Goss P (1999) Physical and psychological morbidity after axillary lymph node dissection for breast cancer. J Clin Oncol 17(1):143–149

    PubMed  CAS  Google Scholar 

  59. Mirolo BR, Bunce IH, Chapman M, Olsen T, Eliadis P, Hennessy JM, Ward LC, Jones LC (1995) Psychosocial benefits of postmastectomy lymphedema therapy. Cancer Nurs 18(3):197–205

    Article  PubMed  CAS  Google Scholar 

  60. Cherry SR, Phelps ME (1995) Positron emission tomography: Methods and instrumentation. 139–159

  61. Beanlands R, Chamberlain M, Cripps C, et al. (2001) Position paper on the future of positron emission tomography in Ontario. Oakville, Ontario: Council of Medical Imaging

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Scott Sloka MD.

Appendix

Appendix

In this study, the cost of capital equipment is discounted over the expected lifetime of the equipment by using a standard annuity formula, amortized over the equipment lifetime at an assumed interest rate of 6%. Estimated equipment costs are outlined in Table A. The estimated equipment lifetime for a positron tomograph is five years, and it is 10 years for a cyclotron installation [61].

For both a PET camera and a cyclotron, the estimated yearly operating cost is $1,625 K. Assuming that each PET installation operated at full potential on a one shift per day basis (seven patients per shift), there would be a yearly capacity for 1,750 cases. The total cost per case would be $1,625 K/1,750 cases = $929/case. Allowing for a physician remuneration of $100 per case (an estimate based on other modalities), the total cost per case is estimated to be $1,029. Capital acquisition, depreciation, and annual operating estimates were not included for CT because one CT study is performed per person in each strategy, and these costs cancel out when the two management strategies are compared. Overhead costs were not included in this analysis.

Table A PET camera capital and operating cost estimates

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloka, J.S., Hollett, P.D. & Mathews, M. Cost-Effectiveness of Positron Emission Tomography in Breast Cancer. Mol Imaging Biol 7, 351–360 (2005). https://doi.org/10.1007/s11307-005-0012-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-005-0012-5

Keywords

Navigation