Alonso, A., Marsal, S., & Julià, A. (2015). Analytical methods in untargeted metabolomics: State of the art in 2015. Frontiers in Bioengineering and Biotechnology, 3, 23. https://doi.org/10.3389/fbioe.2015.00023
Article
PubMed
PubMed Central
Google Scholar
Alseekh, S., Aharoni, A., Brotman, Y., Contrepois, K., Dauria, J., Ewald, J., Ewald, J. C., Fraser, P. D., Giavalisco, P., Hall, R. D., Heinemann, M., Link, H., Luo, J., Neumann, S., Nielsen, J., Perez de Souza, L., Saito, K., Sauer, U., Schroeder, F. C., & Fernie, A. R. (2021). Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nature Methods, 18(7), 747–756. https://doi.org/10.1038/s41592-021-01197-1
CAS
Article
PubMed
Google Scholar
Anwar, A. M., Ahmed, E. A., Soudy, M., Osama, A., Ezzeldin, S., Tanios, A., Mahgoub, S., & Magdeldin, S. (2021). Xconnector: Retrieving and visualizing metabolites and pathways information from various database resources. Journal of Proteomics, 245, 104302. https://doi.org/10.1016/j.jprot.2021.104302
CAS
Article
PubMed
Google Scholar
Comte, B., Monnerie, S., Brandolini-Bunlon, M., Canlet, C., Castelli, F., Chu-Van, E., Colsch, B., Fenaille, F., Joly, C., Jourdan, F., Lenuzza, N., Lyan, B., Martin, J.-F., Migné, C., Morais, J. A., Pétéra, M., Poupin, N., Vinson, F., Thevenot, E., & Pujos-Guillot, E. (2021). Multiplatform metabolomics for an integrative exploration of metabolic syndrome in older men. eBioMedicine, 69, 103440. https://doi.org/10.1016/j.ebiom.2021.103440
CAS
Article
PubMed
PubMed Central
Google Scholar
Cottret, L., Frainay, C., Chazalviel, M., Cabanettes, F., Gloaguen, Y., Camenen, E., Merlet, B., Heux, S., Portais, J.-C., Poupin, N., Vinson, F., & Jourdan, F. (2018). MetExplore: Collaborative edition and exploration of metabolic networks. Nucleic Acids Research, 46(1), 495–502. https://doi.org/10.1093/nar/gky301
CAS
Article
Google Scholar
Creek, D. J., Dunn, W. B., Fiehn, O., Griffin, J. L., Hall, R. D., Lei, Z., Mistrik, R., Neumann, S., Schymanski, E. L., Sumner, L. W., Trengove, R., & Wolfender, J.-L. (2014). Metabolite identification: Are you sure? And how do your peers gauge your confidence? Metabolomics, 10(3), 350–353. https://doi.org/10.1007/s11306-014-0656-8
CAS
Article
Google Scholar
Dalby, A., Nourse, J. G., Hounshell, W. D., Gushurst, A. K. I., Grier, D. L., Leland, B. A., & Laufer, J. (1992). Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. Journal of Chemical Information and Computer Sciences, 32(3), 244–255. https://doi.org/10.1021/ci00007a012
CAS
Article
Google Scholar
Damont, A., Olivier, M.-F., Warnet, A., Lyan, B., Pujos-Guillot, E., Jamin, E. L., Debrauwer, L., Bernillon, S., Junot, C., Tabet, J.-C., & Fenaille, F. (2019). Proposal for a chemically consistent way to annotate ions arising from the analysis of reference compounds under ESI conditions: A prerequisite to proper mass spectral database constitution in metabolomics. Journal of Mass Spectrometry, 54(6), 567–582. https://doi.org/10.1002/jms.4372
CAS
Article
PubMed
Google Scholar
Delmas, M., Filangi, O., Paulhe, N., Vinson, F., Duperier, C., Garrier, W., Saunier, P.-E., Pitarch, Y., Jourdan, F., Giacomoni, F., & Frainay, C. (2021). FORUM: Building a Knowledge Graph from public databases and scientific literature to extract associations between chemicals and diseases. Bioinformatics, 37(21), 3896–3904. https://doi.org/10.1093/bioinformatics/btab627
CAS
Article
PubMed Central
Google Scholar
Dona, A. C., Kyriakides, M., Scott, F., Shephard, E. A., Varshavi, D., Veselkov, K., & Everett, J. R. (2016). A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Computational and Structural Biotechnology Journal, 14, 135–153. https://doi.org/10.1016/j.csbj.2016.02.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu, T., Spener, F., van Meer, G., Wakelam, M. J. O., & Dennis, E. A. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 50, S9–S14. https://doi.org/10.1194/jlr.R800095-JLR200
CAS
Article
PubMed
PubMed Central
Google Scholar
Ferry-Dumazet, H., Gil, L., Deborde, C., Moing, A., Bernillon, S., Rolin, D., Nikolski, M., de Daruvar, A., & Jacob, D. (2011). MeRy-B: A web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles. BMC Plant Biology, 11(1), 104. https://doi.org/10.1186/1471-2229-11-104
Article
PubMed
PubMed Central
Google Scholar
Garcia-Aloy, M., Ulaszewska, M., Franceschi, P., Estruel-Amades, S., Weinert, C. H., Tor-Roca, A., Urpi-Sarda, M., Mattivi, F., & Andres-Lacueva, C. (2020). Discovery of intake biomarkers of lentils, chickpeas, and white beans by untargeted LC–MS metabolomics in serum and urine. Molecular Nutrition & Food Research, 64(13), 1901137. https://doi.org/10.1002/mnfr.201901137
CAS
Article
Google Scholar
Giacomoni, F., Le Corguille, G., Monsoor, M., Landi, M., Pericard, P., Petera, M., Duperier, C., Tremblay-Franco, M., Martin, J.-F., Jacob, D., Goulitquer, S., Thevenot, E. A., & Caron, C. (2015). Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics. Bioinformatics, 31(9), 1493–1495. https://doi.org/10.1093/bioinformatics/btu813
CAS
Article
PubMed
Google Scholar
Goodman, J. M., Pletnev, I., Thiessen, P., Bolton, E., & Heller, S. R. (2021). InChI version 1.06: Now more than 99.99% reliable. Journal of Cheminformatics, 13(1), 40. https://doi.org/10.1186/s13321-021-00517-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Griffin, P. C., Khadake, J., LeMay, K. S., Lewis, S. E., Orchard, S., Pask, A., Pope, B., Roessner, U., Russell, K., Seemann, T., Treloar, A., Tyagi, S., Christiansen, J. H., Dayalan, S., Gladman, S., Hangartner, S. B., Hayden, H. L., Ho, W. W. H., Keeble-Gagnère, G., & Schneider, M. V. (2018). Best practice data life cycle approaches for the life sciences. F1000Research, 6, 1618. https://doi.org/10.12688/f1000research.12344.2
Article
PubMed Central
Google Scholar
Guijas, C., Montenegro-Burke, J. R., Domingo-Almenara, X., Palermo, A., Warth, B., Hermann, G., Koellensperger, G., Huan, T., Uritboonthai, W., Aisporna, A. E., Wolan, D. W., Spilker, M. E., Benton, H. P., & Siuzdak, G. (2018). METLIN: A technology platform for identifying knowns and unknowns. Analytical Chemistry, 90(5), 3156–3164. https://doi.org/10.1021/acs.analchem.7b04424
CAS
Article
PubMed
PubMed Central
Google Scholar
Guitton, Y., Tremblay-Franco, M., Le Corguillé, G., Martin, J.-F., Pétéra, M., Roger-Mele, P., Delabrière, A., Goulitquer, S., Monsoor, M., Duperier, C., Canlet, C., Servien, R., Tardivel, P., Caron, C., Giacomoni, F., & Thévenot, E. A. (2017). Create, run, share, publish, and reference your LC–MS, FIA–MS, GC–MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. The International Journal of Biochemistry & Cell Biology, 93, 89–101. https://doi.org/10.1016/j.biocel.2017.07.002
CAS
Article
Google Scholar
Hamdalla, M. A., Mandoiu, I. I., Hill, D. W., Rajasekaran, S., & Grant, D. F. (2013). BioSM: Metabolomics tool for identifying endogenous mammalian biochemical structures in chemical structure space. Journal of Chemical Information and Modeling, 53(3), 601–612. https://doi.org/10.1021/ci300512q
CAS
Article
PubMed
PubMed Central
Google Scholar
Hastings, J., Owen, G., Dekker, A., Ennis, M., Kale, N., Muthukrishnan, V., Turner, S., Swainston, N., Mendes, P., & Steinbeck, C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Research, 44(D1), D1214–D1219. https://doi.org/10.1093/nar/gkv1031
CAS
Article
PubMed
Google Scholar
Haug, K., Salek, R. M., & Steinbeck, C. (2017). Global open data management in metabolomics. Current Opinion in Chemical Biology, 36, 58–63. https://doi.org/10.1016/j.cbpa.2016.12.024
CAS
Article
PubMed
PubMed Central
Google Scholar
Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M. Y., Nakanishi, H., Ikeda, K., & Nishioka, T. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714. https://doi.org/10.1002/jms.1777
CAS
Article
PubMed
Google Scholar
Huan, T., Forsberg, E. M., Rinehart, D., Johnson, C. H., Ivanisevic, J., Benton, H. P., Fang, M., Aisporna, A., Hilmers, B., Poole, F. L., Thorgersen, M. P., Adams, M. W. W., Krantz, G., Fields, M. W., Robbins, P. D., Niedernhofer, L. J., Ideker, T., Majumder, E. L., Wall, J. D., & Siuzdak, G. (2017). Systems biology guided by XCMS Online metabolomics. Nature Methods, 14(5), 461–462. https://doi.org/10.1038/nmeth.4260
CAS
Article
PubMed
PubMed Central
Google Scholar
Hunter, A., Dayalan, S., De Souza, D., Power, B., Lorrimar, R., Szabo, T., Nguyen, T., O’Callaghan, S., Hack, J., Pyke, J., Nahid, A., Barrero, R., Roessner, U., Likic, V., Tull, D., Bacic, A., McConville, M., & Bellgard, M. (2017). MASTR-MS: A web-based collaborative laboratory information management system (LIMS) for metabolomics. Metabolomics, 13(2), 14. https://doi.org/10.1007/s11306-016-1142-2
CAS
Article
PubMed
Google Scholar
Johnson, S. R., & Lange, B. M. (2015). Open-access metabolomics databases for natural product research: Present capabilities and future potential. Frontiers in Bioengineering and Biotechnology, 3, 00022. https://doi.org/10.3389/fbioe.2015.00022
Article
Google Scholar
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457–D462. https://doi.org/10.1093/nar/gkv1070
CAS
Article
PubMed
Google Scholar
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
CAS
Article
PubMed
Google Scholar
Kim, S., Thiessen, P. A., Cheng, T., Yu, B., & Bolton, E. E. (2018). An update on PUG-REST: RESTful interface for programmatic access to PubChem. Nucleic Acids Research, 46(W1), W563–W570. https://doi.org/10.1093/nar/gky294
CAS
Article
PubMed
PubMed Central
Google Scholar
Kind, T., Tsugawa, H., Cajka, T., Ma, Y., Lai, Z., Mehta, S. S., Wohlgemuth, G., Barupal, D. K., Showalter, M. R., Arita, M., & Fiehn, O. (2018). Identification of small molecules using accurate mass MS/MS search. Mass Spectrometry Reviews, 37(4), 513–532. https://doi.org/10.1002/mas.21535
CAS
Article
PubMed
Google Scholar
Kuhn, S., & Schlörer, N. E. (2015). Facilitating quality control for spectra assignments of small organic molecules: Nmrshiftdb2—a free in-house NMR database with integrated LIMS for academic service laboratories: Lab administration, spectra assignment aid and local database. Magnetic Resonance in Chemistry, 53(8), 582–589. https://doi.org/10.1002/mrc.4263
CAS
Article
PubMed
Google Scholar
Lai, Z., Tsugawa, H., Wohlgemuth, G., Mehta, S., Mueller, M., Zheng, Y., Ogiwara, A., Meissen, J., Showalter, M., Takeuchi, K., Kind, T., Beal, P., Arita, M., & Fiehn, O. (2018). Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nature Methods, 15(1), 53–56. https://doi.org/10.1038/nmeth.4512
CAS
Article
PubMed
Google Scholar
Ludwig, C., Easton, J. M., Lodi, A., Tiziani, S., Manzoor, S. E., Southam, A. D., Byrne, J. J., Bishop, L. M., He, S., Arvanitis, T. N., Günther, U. L., & Viant, M. R. (2012). Birmingham Metabolite Library: A publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics, 8(1), 8–18. https://doi.org/10.1007/s11306-011-0347-7
CAS
Article
Google Scholar
Malinowska, J. M., & Viant, M. R. (2019). Confidence in metabolite identification dictates the applicability of metabolomics to regulatory toxicology. Current Opinion in Toxicology, 16, 32–38. https://doi.org/10.1016/j.cotox.2019.03.006
Article
Google Scholar
Marshall, D. D., & Powers, R. (2017). Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Progress in Nuclear Magnetic Resonance Spectroscopy, 100, 1–16. https://doi.org/10.1016/j.pnmrs.2017.01.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., Tang, W. H., Römpp, A., Neumann, S., Pizarro, A. D., Montecchi-Palazzi, L., Tasman, N., Coleman, M., Reisinger, F., Souda, P., Hermjakob, H., Binz, P.-A., & Deutsch, E. W. (2011). MzML—a community standard for mass spectrometry data. Molecular & Cellular Proteomics, 10(1), R110.000133. https://doi.org/10.1074/mcp.R110.000133
Article
Google Scholar
Mendez, K. M., Pritchard, L., Reinke, S. N., & Broadhurst, D. I. (2019). Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing. Metabolomics, 15(10), 125. https://doi.org/10.1007/s11306-019-1588-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Merlet, B., Paulhe, N., Vinson, F., Frainay, C., Chazalviel, M., Poupin, N., Gloaguen, Y., Giacomoni, F., & Jourdan, F. (2016). A computational solution to automatically map metabolite libraries in the context of genome scale metabolic networks. Frontiers in Molecular Biosciences, 3, e00002. https://doi.org/10.3389/fmolb.2016.00002
CAS
Article
Google Scholar
Misra, B. B. (2021). New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics, 17(5), 49. https://doi.org/10.1007/s11306-021-01796-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Murray, K. K., Boyd, R. K., Eberlin, M. N., Langley, G. J., Li, L., & Naito, Y. (2013). Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85(7), 1515–1609. https://doi.org/10.1351/PAC-REC-06-04-06
CAS
Article
Google Scholar
Nash, W. J., & Dunn, W. B. (2019). From mass to metabolite in human untargeted metabolomics: Recent advances in annotation of metabolites applying liquid chromatography-mass spectrometry data. TrAC Trends in Analytical Chemistry, 120, 115324. https://doi.org/10.1016/j.trac.2018.11.022
O’Boyle, N. M. (2012). Towards a Universal SMILES representation—A standard method to generate canonical SMILES based on the InChI. Journal of Cheminformatics, 4(1), 22. https://doi.org/10.1186/1758-2946-4-22
CAS
Article
PubMed
PubMed Central
Google Scholar
Palmer, A., Phapale, P., Fay, D., & Alexandrov, T. (2018). Curatr: A web application for creating, curating and sharing a mass spectral library. Bioinformatics, 34(8), 1436–1438. https://doi.org/10.1093/bioinformatics/btx786
CAS
Article
PubMed
Google Scholar
Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., Gauthier, C., Jacques, P. -É., Li, S., & Xia, J. (2021). MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 49(W1), W388–W396. https://doi.org/10.1093/nar/gkab382
CAS
Article
PubMed
PubMed Central
Google Scholar
Redestig, H., Kusano, M., Fukushima, A., Matsuda, F., Saito, K., & Arita, M. (2010). Consolidating metabolite identifiers to enable contextual and multi-platform metabolomics data analysis. BMC Bioinformatics, 11(1), 214. https://doi.org/10.1186/1471-2105-11-214
CAS
Article
PubMed
PubMed Central
Google Scholar
Reisdorph, N. A., Walmsley, S., & Reisdorph, R. (2019). A perspective and framework for developing sample type specific databases for LC/MS-based clinical metabolomics. Metabolites, 10(1), 8. https://doi.org/10.3390/metabo10010008
CAS
Article
PubMed Central
Google Scholar
Sansone, S.-A., Rocca-Serra, P., Field, D., Maguire, E., Taylor, C., Hofmann, O., Fang, H., Neumann, S., Tong, W., Amaral-Zettler, L., Begley, K., Booth, T., Bougueleret, L., Burns, G., Chapman, B., Clark, T., Coleman, L.-A., Copeland, J., Das, S., & Hide, W. (2012). Toward interoperable bioscience data. Nature Genetics, 44(2), 121–126. https://doi.org/10.1038/ng.1054
CAS
Article
PubMed
PubMed Central
Google Scholar
Savoi, S., Arapitsas, P., Duchêne, É., Nikolantonaki, M., Ontañón, I., Carlin, S., Schwander, F., Gougeon, R. D., Ferreira, A. C. S., Theodoridis, G., Töpfer, R., Vrhovsek, U., Adam-Blondon, A.-F., Pezzotti, M., & Mattivi, F. (2021). Grapevine and wine metabolomics-based guidelines for FAIR data and metadata management. Metabolites, 11(11), 757. https://doi.org/10.3390/metabo11110757
CAS
Article
PubMed
PubMed Central
Google Scholar
Schober, D., Jacob, D., Wilson, M., Cruz, J. A., Marcu, A., Grant, J. R., Moing, A., Deborde, C., de Figueiredo, L. F., Haug, K., Rocca-Serra, P., Easton, J., Ebbels, T. M. D., Hao, J., Ludwig, C., Günther, U. L., Rosato, A., Klein, M. S., Lewis, I. A., & Neumann, S. (2018). nmrML: A community supported open data standard for the description, storage, and exchange of NMR data. Analytical Chemistry, 90(1), 649–656. https://doi.org/10.1021/acs.analchem.7b02795
CAS
Article
PubMed
Google Scholar
Southan, C. (2013). InChI in the wild: An assessment of InChIKey searching in Google. Journal of Cheminformatics, 5(1), 10. https://doi.org/10.1186/1758-2946-5-10
CAS
Article
PubMed
PubMed Central
Google Scholar
Spicer, R. A., Salek, R., & Steinbeck, C. (2017). A decade after the metabolomics standards initiative it’s time for a revision. Scientific Data, 4(1), 170138. https://doi.org/10.1038/sdata.2017.138
Article
PubMed
PubMed Central
Google Scholar
Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T.W.-M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., & Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(3), 211–221. https://doi.org/10.1007/s11306-007-0082-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Sushko, I., Novotarskyi, S., Körner, R., Pandey, A. K., Rupp, M., Teetz, W., Brandmaier, S., Abdelaziz, A., Prokopenko, V. V., Tanchuk, V. Y., Todeschini, R., Varnek, A., Marcou, G., Ertl, P., Potemkin, V., Grishina, M., Gasteiger, J., Schwab, C., Baskin, I. I., & Tetko, I. V. (2011). Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information. Journal of Computer-Aided Molecular Design, 25(6), 533–554. https://doi.org/10.1007/s10822-011-9440-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039. https://doi.org/10.1021/ac300698c
CAS
Article
PubMed
PubMed Central
Google Scholar
Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., VanderGheynst, J., Fiehn, O., & Arita, M. (2015). MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 12(6), 523–526. https://doi.org/10.1038/nmeth.3393
CAS
Article
PubMed
PubMed Central
Google Scholar
Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., Livny, M., Mading, S., Maziuk, D., Miller, Z., Nakatani, E., Schulte, C. F., Tolmie, D. E., Kent Wenger, R., Yao, H., & Markley, J. L. (2007). BioMagResBank. Nucleic Acids Research, 36, D402–D408. https://doi.org/10.1093/nar/gkm957
CAS
Article
PubMed
PubMed Central
Google Scholar
Vinaixa, M., Schymanski, E. L., Neumann, S., Navarro, M., Salek, R. M., & Yanes, O. (2016). Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. TrAC Trends in Analytical Chemistry, 78, 23–35. https://doi.org/10.1016/j.trac.2015.09.005
CAS
Article
Google Scholar
Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W.-T., Crüsemann, M., Boudreau, P. D., Esquenazi, E., Sandoval-Calderón, M., & Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828–837. https://doi.org/10.1038/nbt.3597
CAS
Article
PubMed
PubMed Central
Google Scholar
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., & Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 160018. https://doi.org/10.1038/sdata.2016.18
Article
PubMed
PubMed Central
Google Scholar
Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., Sajed, T., Johnson, D., Li, C., Karu, N., Sayeeda, Z., Lo, E., Assempour, N., Berjanskii, M., Singhal, S., Arndt, D., Liang, Y., Badran, H., Grant, J., & Scalbert, A. (2018). HMDB 40: The human metabolome database for 2018. Nucleic Acids Research, 46(D1), D608–D617. https://doi.org/10.1093/nar/gkx1089
CAS
Article
PubMed
Google Scholar
Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., Lee, B. L., Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres-Calzada, C., Hiebert-Giesbrecht, M., Lui, V. W., Varshavi, D., Varshavi, D., & Gautam, V. (2022). HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Research, 50(D1), D622–D631. https://doi.org/10.1093/nar/gkab1062
CAS
Article
PubMed
Google Scholar
Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., Hau, D. D., Psychogios, N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J., Jia, L., Cruz, J. A., Lim, E., Sobsey, C. A., Shrivastava, S., Huang, P., & Forsythe, I. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610. https://doi.org/10.1093/nar/gkn810
CAS
Article
PubMed
Google Scholar
Wohlgemuth, G., Haldiya, P. K., Willighagen, E., Kind, T., & Fiehn, O. (2010). The Chemical Translation Service—A web-based tool to improve standardization of metabolomic reports. Bioinformatics, 26(20), 2647–2648. https://doi.org/10.1093/bioinformatics/btq476
CAS
Article
PubMed
PubMed Central
Google Scholar
Wohlgemuth, G., Mehta, S. S., Mejia, R. F., Neumann, S., Pedrosa, D., Pluskal, T., Schymanski, E. L., Willighagen, E. L., Wilson, M., Wishart, D. S., Arita, M., Dorrestein, P. C., Bandeira, N., Wang, M., Schulze, T., Salek, R. M., Steinbeck, C., Nainala, V. C., Mistrik, R., & Fiehn, O. (2016). SPLASH, a hashed identifier for mass spectra. Nature Biotechnology, 34(11), 1099–1101. https://doi.org/10.1038/nbt.3689
CAS
Article
PubMed
PubMed Central
Google Scholar
Xia, J., & Wishart, D. S. (2011). Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Current Protocols in Bioinformatics, 34(1), 10–14. https://doi.org/10.1002/0471250953.bi1410s34
Article
Google Scholar