Skip to main content
Log in

Evaluation of fresh, frozen, and lyophilized fecal samples by SPME and derivatization methods using GC×GC-TOFMS

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Feces is a highly complex matrix containing thousands of metabolites. It also contains live bacteria and enzymes, and does not have a static chemistry. Consequently, proper control of pre-analytical parameters is critical to minimize unwanted variations in the samples. However, no consensus currently exists on how fecal samples should be stored/processed prior to analysis.

Objective

The effects of sample handling conditions on fecal metabolite profiles and abundances were examined using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS).

Methods

Solid-phase microextraction (SPME) and derivatization via trimethylsilylation (TMS) were employed as complementary techniques to evaluate fresh, frozen, and lyophilized fecal samples with expanded coverage of the fecal metabolome. The total number of detected peaks and the signal intensities were compared among the different handling conditions.

Results

Our analysis revealed that the metabolic profiles of fecal samples depend greatly on sample handling and processing conditions, which had a more pronounced effect on results obtained by SPME than by TMS derivatization. Overall, lyophilization resulted in a greater amount of total and class-specific metabolites, which may be attributed to cell lysis and/or membrane disintegration.

Conclusions

A comprehensive comparison of the sample handling conditions provides a deeper understanding of the physicochemical changes that occur within the samples during freezing and lyophilization. Based on our results, snap-freezing at -80 °C would be preferred over lyophilization for handling samples in the field of fecal metabolomics as this imparts the least change from the fresh condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggio, R. B. M., Mayor, A., Coyle, S., Reade, S., Khalid, T., Ratcliffe, N. M., & Probert, C. S. J. (2016). Freeze-drying: An alternative method for the analysis of volatile organic compounds in the headspace of urine samples using solid phase micro-extraction coupled to gas chromatography-mass spectrometry. Chemistry Central Journal, 10(1), 9

    Article  Google Scholar 

  • Bojko, B., Reyes-Garcés, N., Bessonneau, V., Goryński, K., Mousavi, F., Souza Silva, E. A., & Pawliszyn, J. (2014). Solid-phase microextraction in metabolomics. TrAC Trends in Analytical Chemistry, 61, 168–180

    Article  CAS  Google Scholar 

  • Byreddy, A. R., Gupta, A., Barrow, C. J., & Puri, M. (2015). Comparison of cell disruption methods for improving lipid extraction from Thraustochytrid strains.Marine Drugs, 13(8)

  • Cheng, K., Brunius, C., Fristedt, R., & Landberg, R. (2020). An LC-QToF MS based method for untargeted metabolomics of human fecal samples. Metabolomics, 16(4), 46

    Article  CAS  Google Scholar 

  • Choo, J. M., Leong, L. E., & Rogers, G. B. (2015). Sample storage conditions significantly influence faecal microbiome profiles. Scientific Reports, 5(1), 16350

    Article  CAS  Google Scholar 

  • Cooper, G. M. (2020). Cell membranes. The Cell: A Molecular Approach. (2nd ed.). Sunderland

  • de Lacy Costello, B., Amann, A., Al-Kateb, H., Flynn, C., Filipiak, W., Khalid, T. … Ratcliffe, N. M. (2014). A review of the volatiles from the healthy human body. Journal of breath research, 8(1), 014001

    Article  Google Scholar 

  • de la Mata, A. P., McQueen, R. H., Nam, S. L., & Harynuk, J. J. (2017). Comprehensive two-dimensional gas chromatographic profiling and chemometric interpretation of the volatile profiles of sweat in knit fabrics. Analytical and Bioanalytical Chemistry, 409(7), 1905–1913

    Article  Google Scholar 

  • Gao, X., Pujos-Guillot, E., & Sébédio, J. L. (2010). Development of a quantitative metabolomic approach to study clinical human fecal water metabolome based on trimethylsilylation derivatization and GC/MS analysis. Analytical Chemistry, 82(15), 6447–6456

    Article  CAS  Google Scholar 

  • Gratton, J., Phetcharaburanin, J., Mullish, B. H., Williams, H. R. T., Thursz, M., Nicholson, J. K. … Li, J. V. (2016). Optimized sample handling strategy for metabolic profiling of human feces. Analytical Chemistry, 88(9), 4661–4668

    Article  CAS  Google Scholar 

  • Halket, J. M., & Zaikin, V. G. (2003). Derivatization in mass spectrometry—1. Silylation. European Journal of Mass Spectrometry, 9(1), 1–21

    Article  CAS  Google Scholar 

  • Harrison, S. T. L. (2011). 2.44 - Cell disruption. In M. Moo-Young (Eds). Comprehensive Biotechnology (2nd ed., pp. 619–640). Burlington

  • Haydon, P. G. (2012). Chapter 19 - Purinergic signaling. In: S. T. Brady, G. J. Siegel, R. W. Albers, & D. L. Price (Eds.), Basic Neurochemistry (8th ed., pp 377–389). New York

  • Higgins Keppler, E. A., Jenkins, C. L., Davis, T. J., & Bean, H. D. (2018). Advances in the application of comprehensive two-dimensional gas chromatography in metabolomics. TrAC Trends in Analytical Chemistry, 109, 275–286

    Article  CAS  Google Scholar 

  • Hsu, Y. L., Chen, C. C., Lin, Y. T., Wu, W. K., Chang, L. C., Lai, C. H. … Kuo, C. H. (2019). Evaluation and optimization of sample handling methods for quantification of short-chain fatty acids in human fecal samples by GC–MS. Journal of Proteome Research, 18(5), 1948–1957

    Article  CAS  Google Scholar 

  • Kanani, H., Chrysanthopoulos, P. K., & Klapa, M. I. (2008). Standardizing GC–MS metabolomics. Hyphenated Techniques for Global Metabolite Profiling, 871(2), 191–201

    CAS  Google Scholar 

  • Karu, N., Deng, L., Slae, M., Guo, A. C., Sajed, T., Huynh, H. … Wishart, D. S. (2018). A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Analytica Chimica Acta, 1030, 1–24

    Article  CAS  Google Scholar 

  • Kasırga, E. (2019). The importance of stool tests in diagnosis and follow-up of gastrointestinal disorders in children. Turk Pediatri Arsivi, 54(3), 141–148

    PubMed  PubMed Central  Google Scholar 

  • Koek, M. M., Jellema, R. H., van der Greef, J., Tas, A. C., & Hankemeier, T. (2011). Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives. Metabolomics: Official Journal of the Metabolomic Society, 7(3), 307–328

    Article  CAS  Google Scholar 

  • Koek, M. M., Muilwijk, B., van der Werf, M. J., & Hankemeier, T. (2006). Microbial metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry, 78(4), 1272–1281

    Article  CAS  Google Scholar 

  • Lewis, Z. T., Davis, J. C. C., Smilowitz, J. T., German, J. B., Lebrilla, C. B., & Mills, D. A. (2016). The impact of freeze-drying infant fecal samples on measures of their bacterial community profiles and milk-derived oligosaccharide content. PeerJ, 4, e1612–e1612

    Article  Google Scholar 

  • Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Osmosis, water channels, and the regulation of cell volume. Molecular Cell Biology (4th ed.). New York

  • Lu, W., Su, X., Klein, M. S., Lewis, I. A., Fiehn, O., & Rabinowitz, J. D. (2017). Metabolite measurement: pitfalls to avoid and practices to follow. Annual Review of Biochemistry, 86, 277–304

    Article  CAS  Google Scholar 

  • Mairinger, T., Weiner, M., Hann, S., & Troyer, C. (2020). Selective and accurate quantification of N-Acetylglucosamine in biotechnological cell samples via GC–MS/MS and GC–TOFMS. Analytical Chemistry, 92(7), 4875–4883

    Article  CAS  Google Scholar 

  • Mojsak, P., Rey-Stolle, F., Parfieniuk, E., Kretowski, A., & Ciborowski, M. (2020). The role of gut microbiota (GM) and GM-related metabolites in diabetes and obesity. A review of analytical methods used to measure GM-related metabolites in fecal samples with a focus on metabolites’ derivatization step. Journal of Pharmaceutical and Biomedical Analysis, 191, 113617

    Article  CAS  Google Scholar 

  • Molnar, A., Lakat, T., Hosszu, A., Szebeni, B., Balogh, A., Orfi, L. … Hodrea, J. (2021). Lyophilization and homogenization of biological samples improves reproducibility and reduces standard deviation in molecular biology techniques. Amino Acids, 53(6), 917–928

    Article  CAS  Google Scholar 

  • Monteiro, M., Carvalho, M., Henrique, R., Jerónimo, C., Moreira, N., de Lourdes Bastos, M., & de Pinho, P. G. (2014). Analysis of volatile human urinary metabolome by solid-phase microextraction in combination with gas chromatography–mass spectrometry for biomarker discovery: Application in a pilot study to discriminate patients with renal cell carcinoma. European Journal of Cancer, 50(11), 1993–2002

    Article  CAS  Google Scholar 

  • Moosmang, S., Pitscheider, M., Sturm, S., Seger, C., Tilg, H., Halabalaki, M., & Stuppner, H. (2019). Metabolomic analysis—Addressing NMR and LC-MS related problems in human feces sample preparation. Clinica Chimica Acta, 489, 169–176

    Article  CAS  Google Scholar 

  • Nam, S. L., de la Mata, A. P., Dias, R. P., & Harynuk, J. J. (2020). Towards standardization of data normalization strategies to improve urinary metabolomics studies by GC×GC-TOFMS.Metabolites, 10(9)

  • O’Sullivan, V., Madrid-Gambin, F., Alegra, T., Gibbons, H., & Brennan, L. (2018). Impact of sample storage on the NMR fecal water metabolome. ACS Omega, 3(12), 16585–16590

    Article  Google Scholar 

  • Phua, L. C., Koh, P. K., Cheah, P. Y., Ho, H. K., & Chan, E. C. Y. (2013). Global gas chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based metabonomic profiling of lyophilized human feces. Journal of Chromatography B, 937, 103–113

    Article  CAS  Google Scholar 

  • Raman, M., Ahmed, I., Gillevet, P. M., Probert, C. S., Ratcliffe, N. M., Smith, S. … Rioux, K. P. (2013). Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clinical Gastroenterology and Hepatology, 11(7), 868–875e3

    Article  CAS  Google Scholar 

  • Reygner, J., Charrueau, C., Delannoy, J., Mayeur, C., Robert, V., Cuinat, C. … Kapel, N. (2020). Freeze-dried fecal samples are biologically active after long-lasting storage and suited to fecal microbiota transplantation in a preclinical murine model of Clostridioides difficile infection. Gut Microbes, 11(5), 1405–1422

    Article  CAS  Google Scholar 

  • Rose, C., Parker, A., Jefferson, B., & Cartmell, E. (2015). The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Critical Reviews in Environmental Science and Technology, 45(17), 1827–1879

    Article  CAS  Google Scholar 

  • Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24

    Article  CAS  Google Scholar 

  • Ryan, D., & Robards, K. (2006). Metabolomics: The greatest omics of them all? Analytical Chemistry, 78(23), 7954–7958. https://doi.org/10.1021/ac0614341

    Article  CAS  PubMed  Google Scholar 

  • Shehadul Islam, M., Aryasomayajula, A., & Selvaganapathy, P. R. (2017). A review on macroscale and microscale cell lysis methods. Micromachines, 8(3), 83

    Article  Google Scholar 

  • Smith, L., Villaret-Cazadamont, J., Claus, S. P., Canlet, C., Guillou, H., Cabaton, N. J., & Ellero-Simatos, S. (2020). Important Considerations for Sample Collection in Metabolomics Studies with a Special Focus on Applications to Liver Functions. Metabolites, 10(3), 104

    Article  CAS  Google Scholar 

  • Souza-Silva, É. A., Jiang, R., Rodríguez-Lafuente, A., Gionfriddo, E., & Pawliszyn, J. (2015). A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Green Extraction Techniques, 71, 224–235

    CAS  Google Scholar 

  • Tang, Q., Jin, G., Wang, G., Liu, T., Liu, X., Wang, B., & Cao, H. (2020). Current sampling methods for gut microbiota: A call for more precise devices. Frontiers in Cellular and Infection Microbiology, 10, 151–151

    Article  CAS  Google Scholar 

  • Ulaszewska, M. M., Weinert, C. H., Trimigno, A., Portmann, R., Lacueva, A., Badertscher, C. … Vergères, G. (2019). Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies.Molecular nutrition & food research, 63(1), e1800384

  • Vernocchi, P., Del Chierico, F., & Putignani, L. (2016). Gut microbiota profiling: Metabolomics based approach to unravel compounds affecting human health. Frontiers in Microbiology, 7, 1144–1144

    Article  Google Scholar 

  • Wang, Z., Zolnik, C. P., Qiu, Y., Usyk, M., Wang, T., Strickler, H. D. … Burk, R. D. (2018). Comparison of fecal collection methods for microbiome and metabolomics studies. Frontiers in Cellular and Infection Microbiology, 8, 301–301

    Article  Google Scholar 

  • Winnike, J. H., Wei, X., Knagge, K. J., Colman, S. D., Gregory, S. G., & Zhang, X. (2015). Comparison of GC-MS and GC×GC-MS in the analysis of human serum samples for biomarker discovery. Journal of Proteome Research, 14(4), 1810–1817

    Article  CAS  Google Scholar 

  • Zhang, Q., Yin, X., Wang, H., Wu, X., Li, X., Li, Y. … Qiu, Y. (2019). Fecal metabolomics and potential biomarkers for systemic lupus erythematosus. Frontiers in Immunology, 10, 976–976

    Article  CAS  Google Scholar 

  • Zhgun, E. S., & Ilina, E. N. (2020). Fecal metabolites as non-invasive biomarkers of gut diseases. Acta Naturae, 12(2), 4–14

    Article  CAS  Google Scholar 

Download references

Funding

Authors would like to thank MITACS, DNA Genotek, Inc., The Natural Sciences and Engineering Research Council of Canada (NSERC) for support. The support of The Canada Foundation for Innovation (CFI), Genome Canada, and Genome Alberta to The Metabolomics Innovation Center (TMIC) is also acknowledged. The authors also wish to thank GC for her help in securing funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Sample preparation and data collection were performed by KTC; data processing and analysis were performed by SLN. The first draft of the manuscript was written by SLN and all authors commented on previous versions of the manuscript. All authors have read and agreed to the final manuscript.

Corresponding author

Correspondence to James Harynuk.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the University of Alberta Research Ethics Board, under approval number Pro00071285.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Links to electronic supplementary material are included below.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, S.L., Tarazona Carrillo, K., de la Mata, A.P. et al. Evaluation of fresh, frozen, and lyophilized fecal samples by SPME and derivatization methods using GC×GC-TOFMS. Metabolomics 18, 25 (2022). https://doi.org/10.1007/s11306-022-01881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-022-01881-z

Keywords

Navigation