Skip to main content

Advertisement

Log in

Cross-comparison of systemic and tissue-specific metabolomes in a mouse model of Leigh syndrome

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The value of metabolomics in multi-systemic mitochondrial disease research has been increasingly recognized, with the ability to investigate a variety of biofluids and tissues considered a particular advantage. Although minimally invasive biofluids are the generally favored sample type, it remains unknown whether systemic metabolomes provide a clear reflection of tissue-specific metabolic alterations.

Objectives

Here we cross-compare urine and tissue-specific metabolomes in the Ndufs4 knockout mouse model of Leigh syndrome—a complex neurometabolic MD defined by progressive focal lesions in specific brain regions—to identify and evaluate the extent of common and unique metabolic alterations on a systemic and brain regional level.

Methods

Untargeted and semi-targeted multi-platform metabolomics were performed on urine, four brain regions, and two muscle types of Ndufs4 KO (n≥19) vs wildtype (n≥20) mice.

Results

Widespread alterations were evident in alanine, aspartate, glutamate, and arginine metabolism in Ndufs4 KO mice; while brain-region specific metabolic signatures include the accumulation of branched-chain amino acids, proline, and glycolytic intermediates. Furthermore, we describe a systemic dysregulation in one-carbon metabolism and the tricarboxylic acid cycle, which was not clearly reflected in the Ndufs4 KO brain.

Conclusion

Our results confirm the value of urinary metabolomics when evaluating MD-associated metabolites, while cautioning against mechanistic studies relying solely on systemic biofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The metabolomics data obtained in this study can be accessed at the Common Fund’s National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench (https://www.metabolomicsworkbench.org) where it has been assigned project IDs: PR000721 (Terburgh et al., 2019a), PR001003 (Terburgh et al., 2021b), and PR001187 (Terburgh et al., 2021c).

Abbreviations

1C:

One-carbon

3-MH:

3-methylhistidine

BCAA:

Branched-chain amino acids

BBD:

γ-butyrobetaine dioxygenase

BHMT:

Betaine-homocysteine methyltransferase

CI:

Complex I

CII:

Complex II

CoA:

Coenzyme A

DHAP:

Dihydroxyacetone phosphate

ES:

Effect size

ETFDH:

Electron-transferring-flavoprotein dehydrogenase

FDR:

False discovery rate

G3P:

Gycerol-3-phosphate

GC-TOF-MS:

Gas chromatography time-of-flight mass spectrometry

GLUT1:

Glucose transporter 1

HP:

Hydroxyphenyl

KO:

Knockout

LC-MS/MS:

Liquid chromatography-tandem mass spectrometry

LS:

Leigh syndrome

MD:

Mitochondrial disease

NAD(P)H:

Nicotinamide adenine dinucleotide (phosphate)

NAG:

N-acetyl glutamate

OXPHOS:

Oxidative phosphorylation

P:

Postnatal day

Q:

Ubiquinone

SAM:

S-adenosyl methionine

SCF:

Short chain fatty acids

TCA:

Tricarboxylic acid

WT:

Wild type

References

  • Alam, M. T., Manjeri, G. R., Rodenburg, R. J., Smeitink, J. A. M., Notebaart, R. A., Huynen, M., Willems, P. H. G. M., & Koopman, W. J. H. (2015). Skeletal muscle mitochondria of NDUFS4−/− mice display normal maximal pyruvate oxidation and ATP production. Biochim. Biophys. Acta Bioenerg., 1847, 526–533.

    CAS  Google Scholar 

  • Alfadda, A., DosSantos, R. A., Stepanyan, Z., Marrif, H., & Silva, J. E. (2004). Mice with deletion of the mitochondrial glycerol-3-phosphate dehydrogenase gene exhibit a thrifty phenotype: Effect of gender. Am. J. Physiol. Regul. Integr. Comp. Physiol., 287, R147–R156.

    CAS  PubMed  Google Scholar 

  • Baars, A., Oosting, A., Lohuis, M., Koehorst, M., El Aidy, S., Hugenholtz, F., Smidt, H., Mischke, M., Boekschoten, M. V., Verkade, H. J., Garssen, J., van der Beek, E. M., Knol, J., de Vos, P., van Bergenhenegouwen, J., & Fransen, F. (2018). Sex differences in lipid metabolism are affected by presence of the gut microbiota. Sci. Rep., 8, 13426.

    PubMed  PubMed Central  Google Scholar 

  • Bao, X. R., Ong, S.-E., Goldberger, O., Peng, J., Sharma, R., Thompson, D. A., Vafai, S. B., Cox, A. G., Marutani, E., Ichinose, F., Goessling, W., Regev, A., Carr, S. A., Clish, C. B., & Mootha, V. K. (2016). Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife, 5, e10575.

    PubMed  PubMed Central  Google Scholar 

  • Bolea, I., Gella, A., Sanz, E., Prada-Dacasa, P., Menardy, F., Bard, A. M., Rquez, P.M.-M., Eraso-Pichot, A., dol-Caballero, G. M., Navarro, X., Kalume, F., & Quintana, A. (2019). Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome. eLife, 8, e47163.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkman, B. M., Becker, A., Ayiseh, R. B., Hildebrand, F., Raes, J., Huys, G., & Vandenabeele, P. (2013). Gut microbiota affects sensitivity to acute DSS-induced colitis independently of host genotype. Inflamm. Bowel. Dis., 19, 2560–7.

    PubMed  Google Scholar 

  • Chella Krishnan, K., Mehrabian, M., & Lusis, A. J. (2018). Sex differences in metabolism and cardiometabolic disorders. Curr. Opin. Lipidol., 29, 404–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Q., Kirk, K., Shurubor, Y. I., Zhao, D., Arreguin, A. J., Shahi, I., Valsecchi, F., Primiano, G., Calder, E. L., & Carelli, V. (2018). Rewiring of glutamine metabolism is a bioenergetic adaptation of human cells with mitochondrial DNA mutations. Cell Metab., 27, 1007-1025.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, K. H., Lee, J. H., & Lee, D. G. (2021). Sex-related differences in bone metabolism in osteoporosis observational study. Medicine, 100, e26153.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res., 46, W486–W494.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chouchani, E. T., Methner, C., Buonincontri, G., Hu, C.-H., Logan, A., Sawiak, S. J., Murphy, M. P., & Krieg, T. (2014). Complex I deficiency due to selective loss of Ndufs4 in the mouse heart results in severe hypertrophic cardiomyopathy. PLoS One, 9, e94157.

    PubMed  PubMed Central  Google Scholar 

  • Clegg, D. J., & Mauvais-Jarvis, F. (2018). An integrated view of sex differences in metabolic physiology and disease. Mol. Metab., 15, 1–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davydova, E., Shimazu, T., Schuhmacher, M. K., Jakobsson, M. E., Willemen, H. L. D. M., Liu, T., Moen, A., Ho, A. Y. Y., Małecki, J., Schroer, L., Pinto, R., Suzuki, T., Grønsberg, I. A., Sohtome, Y., Akakabe, M., Weirich, S., Kikuchi, M., Olsen, J. V., Dohmae, N., … Falnes, P. Ø. (2021). The methyltransferase METTL9 mediates pervasive 1-methylhistidine modification in mammalian proteomes. Nat. Commun., 12, 891.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demetz, E., Schroll, A., Auer, K., Heim, C., Patsch, J. R., Eller, P., Theurl, M., Theurl, I., Theurl, M., Seifert, M., Lener, D., Stanzl, U., Haschka, D., Asshoff, M., Dichtl, S., Nairz, M., Huber, E., Stadlinger, M., Moschen, A. R., … Tancevski, I. (2014). The arachidonic acid metabolome serves as a conserved regulator of cholesterol metabolism. Cell Metab., 20, 787–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Meo, I., Marchet, S., Lamperti, C., Zeviani, M., & Viscomi, C. (2017). AAV9-based gene therapy partially ameliorates the clinical phenotype of a mouse model of Leigh syndrome. Gene Ther., 24, 661–667.

    PubMed  PubMed Central  Google Scholar 

  • Elshaghabee, F. M., Bockelmann, W., Meske, D., de Vrese, M., Walte, H. G., Schrezenmeir, J., & Heller, K. J. (2016). Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions. Front. Microbiol., 7, 47.

    PubMed  PubMed Central  Google Scholar 

  • Emmerzaal, T. L., Preston, G., Geenen, B., Verweij, V., Wiesmann, M., Vasileiou, E., Grüter, F., de Groot, C., Schoorl, J., de Veer, R., Roelofs, M., Arts, M., Hendriksen, Y., Klimars, E., Donti, T. R., Graham, B. H., Morava, E., Rodenburg, R. J., & Kozicz, T. (2020). Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice. Transl. Psychiatry, 10, 176.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esterhuizen, K., Lindeque, J. Z., Mason, S., van der Westhuizen, F. H., Suomalainen, A., Hakonen, A. H., Carroll, C. J., Rodenburg, R. J., de Laat, P. B., Janssen, M. C. H., Smeitink, J. A. M., & Louw, R. (2019). A urinary biosignature for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS). Mitochondrion, 45, 38–45.

    CAS  PubMed  Google Scholar 

  • Esterhuizen, K., van der Westhuizen, F. H., & Louw, R. (2017). Metabolomics of mitochondrial disease. Mitochondrion, 35, 97–110.

    CAS  PubMed  Google Scholar 

  • Gella, A., Prada-Dacasa, P., Carrascal, M., Urpi, A., González Torres, M., Abian, J., Sanz, E., & Quintana, A. (2020). Mitochondrial proteome of affected glutamatergic neurons in a mouse model of Leigh syndrome. Front. Cell Dev. Biol., 8, 660.

    PubMed  PubMed Central  Google Scholar 

  • Go, S., Kramer, T. T., Verhoeven, A. J., Oude Elferink, R. P. J., & Chang, J.-C. (2020). The extracellular lactate-to-pyruvate ratio modulates the sensitivity to oxidative stress-induced apoptosis via the cytosolic NADH/NAD+ redox state. Apoptosis, 26, 38–51.

    PubMed  PubMed Central  Google Scholar 

  • Greter, J., Lindstedt, S., Seeman, H., & Steen, G. (1980). 2-Hydroxy-2-methylsuccinic acid—a urinary metabolite in propionyl-CoA carboxylase deficiency. Clin. Chim. Acta, 106, 103–106.

    CAS  PubMed  Google Scholar 

  • Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal. Biochem., 331, 283–295.

    CAS  PubMed  Google Scholar 

  • Harper, A. E., Miller, R. H., & Block, K. P. (1984). Branched-chain amino acid metabolism. Annu. Rev. Nutr., 4, 409–54.

    CAS  PubMed  Google Scholar 

  • Holeček, M. (2018). Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab., 15, 33–33.

    Google Scholar 

  • Ito, T. K., Lu, C., Khan, J., Nguyen, Q., Huang, H. Z., Kim, D., Phillips, J., Tan, J., Lee, Y., Nguyen, T., Khessib, S., Lim, N., Mekvanich, S., Oh, J., Pineda, V. V., Wang, W., Bitto, A., An, J. Y., Morton, J. F., … Kaeberlein, M. (2017). Hepatic S6K1 partially regulates lifespan of mice with mitochondrial complex I deficiency. Front. Genet., 8, 113.

    PubMed  PubMed Central  Google Scholar 

  • Jain, I. H., Zazzeron, L., Goli, R., Alexa, K., Schatzman-Bone, S., Dhillon, H., Goldberger, O., Peng, J., Shalem, O., Sanjana, N. E., Zhang, F., Goessling, W., Zapol, W. M., & Mootha, V. K. (2016). Hypoxia as a therapy for mitochondrial disease. Science, 352, 54–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, C., Hui, S., Zeng, X., Cowan, A. J., Wang, L., Chen, L., Morscher, R. J., Reyes, J., Frezza, C., Hwang, H. Y., Imai, A., Saito, Y., Okamoto, K., Vaspoli, C., Kasprenski, L., Zsido, G. A., Gorman, J. H., Gorman, R. C., & Rabinowitz, J. D. (2019). Metabolite exchange between mammalian organs quantified in pigs. Cell Metab., 30, 594-606.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, Z., Wei, W., Yang, M., Du, Y., & Wan, Y. (2014). Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab., 20, 483–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, S. C., Kayser, E.-B., Bornstein, R., Stokes, J., Bitto, A., Park, K. Y., Pan, A., Sun, G., Raftery, D., Kaeberlein, M., Sedensky, M. M., & Morgan, P. G. (2020). Regional metabolic signatures in the Ndufs4(KO) mouse brain implicate defective glutamate/α-ketoglutarate metabolism in mitochondrial disease. Mol. Genet. Metab., 130, 118–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, S. C., Yanos, M. E., Kayser, E. B., Quintana, A., Sangesland, M., Castanza, A., Uhde, L., Hui, J., Wall, V. Z., Gagnidze, A., Oh, K., Wasko, B. M., Ramos, F. J., Palmiter, R. D., Rabinovitch, P. S., Morgan, P. G., Sedensky, M. M., & Kaeberlein, M. (2013). mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science, 342, 1524–1528.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilsdonk, E. P., Morel, D. W., Johnson, W. J., & Rothblat, G. H. (1995). Inhibition of cellular cholesterol efflux by 25-hydroxycholesterol. J. Lipid Res., 36, 505–516.

    CAS  PubMed  Google Scholar 

  • Kruse, S. E., Watt, W. C., Marcinek, D. J., Kapur, R. P., Schenkman, K. A., & Palmiter, R. D. (2008). Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab., 7, 312–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lake, N. J., Compton, A. G., Rahman, S., & Thorburn, D. R. (2016). Leigh syndrome: One disorder, more than 75 monogenic causes. Ann. Neurol., 79, 190–203.

    PubMed  Google Scholar 

  • Laukens, D., Brinkman, B. M., Raes, J., De Vos, M., & Vandenabeele, P. (2016). Heterogeneity of the gut microbiome in mice: Guidelines for optimizing experimental design. FEMS microbiology reviews, 40, 117–132.

    CAS  PubMed  Google Scholar 

  • Lee, C. F., Caudal, A., Abell, L., Nagana Gowda, G. A., & Tian, R. (2019). Targeting NAD(+) metabolism as interventions for mitochondrial disease. Sci. Rep., 9, 3073–3073.

    PubMed  PubMed Central  Google Scholar 

  • Li, J. V., Ashrafian, H., Sarafian, M., Homola, D., Rushton, L., Barker, G., Cabrera, P. M., Lewis, M. R., Darzi, A., Lin, E., Gletsu-Miller, N. A., Atkin, S. L., Sathyapalan, T., Gooderham, N. J., Nicholson, J. K., Marchesi, J. R., Athanasiou, T., & Holmes, E. (2021). Roux-en-Y gastric bypass-induced bacterial perturbation contributes to altered host-bacterial co-metabolic phenotype. Microbiome, 9, 139.

    PubMed  PubMed Central  Google Scholar 

  • Lindholm, H., Löfberg, M., Somer, H., Näveri, H., & Sovijärvi, A. (2004). Abnormal blood lactate accumulation after exercise in patients with multiple mitochondrial DNA deletions and minor muscular symptoms. Clin. Physiol. Funct. Imaging, 24, 109–15.

    CAS  PubMed  Google Scholar 

  • Liu, L., MacKenzie, K. R., Putluri, N., Maletić-Savatić, M., & Bellen, H. J. (2017). The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab., 26, 719-737.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Zhang, K., Sandoval, H., Yamamoto, S., Jaiswal, M., Sanz, E., Li, Z., Hui, J., Graham, B. H., & Quintana, A. (2015). Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell, 160, 177–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Fu, S., Wang, G., Cao, Y., Li, L., Li, X., Yang, J., Li, N., Shan, Y., Cao, Y., Ma, Y., Dong, M., Liu, Q., & Jiang, H. (2021). Glycerol-3-phosphate biosynthesis regenerates cytosolic NAD+ to alleviate mitochondrial disease. Cell Metab. https://doi.org/10.1016/j.cmet.2021.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Löfberg, M., Lindholm, H., Näveri, H., Majander, A., Suomalainen, A., Paetau, A., Sovijärvi, A., Härkönen, M., & Somer, H. (2001). ATP, phosphocreatine and lactate in exercising muscle in mitochondrial disease and McArdle’s disease. Neuromuscul. Disord., 11, 370–5.

    PubMed  Google Scholar 

  • Lucas, S., Chen, G., Aras, S., & Wang, J. (2018). Serine catabolism is essential to maintain mitochondrial respiration in mammalian cells. Life Sci. Alliance, 1, e201800036.

    PubMed  PubMed Central  Google Scholar 

  • Lundsgaard, A. -M., & Kiens, B. (2014). Gender differences in skeletal muscle substrate metabolism – molecular mechanisms and insulin sensitivity. Frontiers in Endocrinology, 5.

  • MacDonald, M. J., & Marshall, L. K. (2000). Mouse lacking NAD+-linked glycerol phosphate dehydrogenase has normal pancreatic beta cell function but abnormal metabolite pattern in skeletal muscle. Arch. Biochem. Biophys., 384, 143–153.

    CAS  PubMed  Google Scholar 

  • MacDonald, M. J., & Marshall, L. K. (2001). Survey of normal appearing mouse strain which lacks malic enzyme and Nad+-linked glycerol phosphate dehydrogenase: Normal pancreatic beta cell function, but abnormal metabolite pattern in skeletal muscle. Mol. Cell. Biochem., 220, 117–125.

    CAS  PubMed  Google Scholar 

  • Miller, H. C., Louw, R., Mereis, M., Venter, G., Boshoff, J.-D., Mienie, L., van Reenen, M., Venter, M., Lindeque, J. Z., Domínguez-Martínez, A., Quintana, A., & van der Westhuizen, F. H. (2021). Metallothionein 1 overexpression does not protect against mitochondrial disease pathology in Ndufs4 knockout mice. Mol. Neurobiol., 58, 243–262.

    PubMed  Google Scholar 

  • Millward, D. J., & Bates, P. C. (1983). 3-Methylhistidine turnover in the whole body, and the contribution of skeletal muscle and intestine to urinary 3-methylhistidine excretion in the adult rat. Biochem. J., 214, 607–615.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mootha, V. K., & Chinnery, P. F. (2018). Oxygen in mitochondrial disease: Can there be too much of a good thing? J. Inherit. Metab. Dis., 41, 761–763.

    CAS  PubMed  Google Scholar 

  • Mullen, Andrew R., Hu, Z., Shi, X., Jiang, L., Boroughs, Lindsey K., Kovacs, Z., Boriack, R., Rakheja, D., Sullivan, Lucas B., Linehan, W. M., Chandel, Navdeep S., & DeBerardinis, Ralph J. (2014). Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep., 7, 1679–1690.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munnich, A., Rötig, A., Chretien, D., Saudubray, J. M., Cormier, V., & Rustin, P. (1996). Clinical presentations and laboratory investigations in respiratory chain deficiency. Eur. J. Pediatr., 155, 262–274.

    CAS  PubMed  Google Scholar 

  • Newgard, C. B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab., 15, 606–614.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikkanen, J., Forsstrom, S., Euro, L., Paetau, I., Kohnz, R. A., Wang, L., Chilov, D., Viinamaki, J., Roivainen, A., Marjamaki, P., Liljenback, H., Ahola, S., Buzkova, J., Terzioglu, M., Khan, N. A., Pirnes-Karhu, S., Paetau, A., Lonnqvist, T., Sajantila, A., … Suomalainen, A. (2016). Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism. Cell Metab., 23, 635–648.

    CAS  PubMed  Google Scholar 

  • Ning, Z., Star, A. T., Mierzwa, A., Lanouette, S., Mayne, J., Couture, J.-F., & Figeys, D. (2016). A charge-suppressing strategy for probing protein methylation. Chem. Commun., 52, 5474–5477.

    CAS  Google Scholar 

  • Nishizawa, N., Noguchi, T., Hareyama, S., & Funabiki, R. (1977). Fractional flux rates of Nτ -methylhistidine in skin and gastrointestine: The contribution of these tissues to urinary excretion of Nτ -methylhistidine in the rat. Br. J. Nutr., 38, 149–151.

    CAS  PubMed  Google Scholar 

  • Pietrocola, F., Galluzzi, L., Pedro, Bravo-San., José, M., Madeo, F., & Kroemer, G. (2015). Acetyl coenzyme A: A central metabolite and second messenger. Cell Metab., 21, 805–821.

    CAS  PubMed  Google Scholar 

  • Piroli, G., Manuel, A., Smith, H., McCain, R., Walla, M. and Frizzell, N. (2020) Succination of Dihydrolipoyllysine Succinyltransferase (DLST) Exacerbates Mitochondrial ATP Deficiency in a Mouse Model of Leigh Syndrome, bioRxiv.

  • Piroli, G. G., Manuel, A. M., Clapper, A. C., Walla, M. D., Baatz, J. E., Palmiter, R. D., Quintana, A., & Frizzell, N. (2016). Succination is increased on select proteins in the brainstem of the NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) knockout mouse, a model of Leigh syndrome. Mol. Cell Proteom., 15, 445–461.

    CAS  Google Scholar 

  • Quintana, A., Kruse, S. E., Kapur, R. P., Sanz, E., & Palmiter, R. D. (2010). Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. PNAS, 107, 10996–11001.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman, J., & Rahman, S. (2018). Mitochondrial medicine in the omics era. Lancet, 391, 2560–2574.

    CAS  PubMed  Google Scholar 

  • Rahman, S. (2020). Mitochondrial disease in children. J. Intern. Med., 287, 609–633.

    CAS  PubMed  Google Scholar 

  • Rahman, S., Blok, R., Dahl, H. H., Danks, D., Kirby, D., Chow, C., Christodoulou, J., & Thorburn, D. (1996). Leigh syndrome: Clinical features and biochemical and DNA abnormalities. Ann. Neurol., 39, 343–351.

    CAS  PubMed  Google Scholar 

  • Rodenburg, R. J. (2016). Mitochondrial complex I-linked disease. Biochim. Biophys. Acta Bioenerg., 1857, 938–945.

    CAS  Google Scholar 

  • Ruoppolo, M., Caterino, M., Albano, L., Pecce, R., Di Girolamo, M. G., Crisci, D., Costanzo, M., Milella, L., Franconi, F., & Campesi, I. (2018). Targeted metabolomic profiling in rat tissues reveals sex differences. Sci. Rep., 8, 4663.

    PubMed  PubMed Central  Google Scholar 

  • Saggerson, D. (2008). Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr., 28, 253–272.

    CAS  PubMed  Google Scholar 

  • Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A., Pham, L.-D., Wibowo, M. C., Wurth, R. C., Punthambaker, S., Tierney, B. T., Yang, Z., Hattab, M. W., Avila-Pacheco, J., Clish, C. B., Lessard, S., Church, G. M., & Kostic, A. D. (2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med., 25, 1104–1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiaffino, S., & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiol. Rev., 91, 1447–1531.

    CAS  Google Scholar 

  • Schirris, T. J. J., Rossell, S., de Haas, R., Frambach, S. J. C. M., Hoogstraten, C. A., Renkema, G. H., Beyrath, J. D., Willems, P. H. G. M., Huynen, M. A., Smeitink, J. A. M., Russel, F. G. M., & Notebaart, R. A. (2021). Stimulation of cholesterol biosynthesis in mitochondrial complex I-deficiency lowers reductive stress and improves motor function and survival in mice. Biochim. Biophys. Acta Mol. Basis Dis., 1867, 166062.

    CAS  PubMed  Google Scholar 

  • Schroeder, M. A., Atherton, H. J., Dodd, M. S., Lee, P., Cochlin, L. E., Radda, G. K., Clarke, K., & Tyler, D. J. (2012). The cycling of acetyl-coenzyme A through acetylcarnitine buffers cardiac substrate supply: A hyperpolarized 13C magnetic resonance study. Circ. Cardiovasc. Imaging, 5, 201–209.

    PubMed  PubMed Central  Google Scholar 

  • Schwörer, S., Berisa, M., Violante, S., Qin, W., Zhu, J., Hendrickson, R. C., Cross, J. R., & Thompson, C. B. (2020). Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress. EMBO J., 39, e103334.

    PubMed  PubMed Central  Google Scholar 

  • Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol., 48, 2097–2098.

    CAS  PubMed  Google Scholar 

  • Shargill, N. S., Ohshima, K., Bray, G. A., & Chan, T. M. (1984). Muscle protein turnover in the perfused hindquarters of lean and genetically obese-diabetic (db/db) mice. Diabetes, 33, 1160–1164.

    CAS  PubMed  Google Scholar 

  • Steele, H. E., Horvath, R., Lyon, J. J., & Chinnery, P. F. (2017). Monitoring clinical progression with mitochondrial disease biomarkers. Brain, 140, 2530–2540.

    PubMed  PubMed Central  Google Scholar 

  • Szegedi, S. S., Castro, C. C., Koutmos, M., & Garrow, T. A. (2008). Betaine-homocysteine S-methyltransferase-2 is an S-methylmethionine-homocysteine methyltransferase. J. Biol. Chem., 283, 8939–8945.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teng, Y.-W., Mehedint, M. G., Garrow, T. A., & Zeisel, S. H. (2011). Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J. Biol. Chem., 286, 36258–36267.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terburgh, K., Coetzer, J., Lindeque, J. Z., van der Westhuizen, F. H., & Louw, R. (2021). Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochim. Biophys. Acta Mol. Basis Dis., 1867, 166082.

    CAS  PubMed  Google Scholar 

  • Terburgh, K., Lindeque, J. Z., Mason, S. W., Van der Westhuizen, F. H., & Louw, R. (2019). Multiplatform metabolomics data from Ndufs4−/− skeletal muscles. Metabolomics Workbench. https://doi.org/10.21228/M8GM4Z

    Article  Google Scholar 

  • Terburgh, K., Lindeque, J. Z., van der Westhuizen, F. H., & Louw, R. (2021). Metabolomics of Ndufs4 KO brain regions. Metabolomics Workbench. https://doi.org/10.21228/M8210V

    Article  Google Scholar 

  • Terburgh, K., Lindeque, J. Z., van der Westhuizen, F. H., & Louw, R. (2021). Ndufs4 KO mouse urine metabolomics. Metabolomics Workbench. https://doi.org/10.21228/M88M43

    Article  Google Scholar 

  • Terburgh, K., Lindeque, Z., Mason, S., Van der Westhuizen, F., & Louw, R. (2019). Metabolomics of Ndufs4−/− skeletal muscle: Adaptive mechanisms converge at the ubiquinone-cycle. Biochim. Biophys. Acta Mol. Basis Dis., 1865, 98–106.

    CAS  PubMed  Google Scholar 

  • van Goudoever, J. B., & Matthews, D. E. (2017). 44 - general concepts of protein metabolism. In: Polin, R.A., Abman, S. H., Rowitch, D. H., Benitz, W. E., & Fox, W. W. (Eds), Fetal and Neonatal Physiology (Fifth Edition), Elsevier. pp. 436-444.e3.

  • Vaz, F. M., & Wanders, R. J. (2002). Carnitine biosynthesis in mammals. Biochem. J., 361, 417–429.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkataraman, A., Rosenbaum, M. A., Werner, J. J., Winans, S. C., & Angenent, L. T. (2014). Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa. ISME J., 8, 1210–1220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vignoli, A., Tenori, L., Luchinat, C., & Saccenti, E. (2018). Age and sex effects on plasma metabolite association networks in healthy subjects. J. Proteome Res., 17, 97–107.

    CAS  PubMed  Google Scholar 

  • Wassner, S. J., & Li, J. B. (1982). N tau-methylhistidine release: Contributions of rat skeletal muscle, GI tract, and skin. Am. J. Physiol., 243, E293–E297.

    CAS  PubMed  Google Scholar 

  • Wells, A., Barrington, W., Threadgill, D., Dearth, S., Campagna, S., Saxton, A., & Voy, B. (2016). Gene, sex and diet interact to control the tissue metabolome. FASEB J., 30(127), 2.

    Google Scholar 

  • Wilkinson, A. W., Diep, J., Dai, S., Liu, S., Ooi, Y. S., Song, D., Li, T.-M., Horton, J. R., Zhang, X., Liu, C., Trivedi, D. V., Ruppel, K. M., Vilches-Moure, J. G., Casey, K. M., Mak, J., Cowan, T., Elias, J. E., Nagamine, C. M., Spudich, J. A., … Gozani, O. (2019). SETD3 is an actin histidine methyltransferase that prevents primary dystocia. Nature, 565, 372–376.

    CAS  PubMed  Google Scholar 

  • Wu, G., Bazer, F. W., Burghardt, R. C., Johnson, G. A., Kim, S. W., Knabe, D. A., Li, P., Li, X., McKnight, J. R., Satterfield, M. C., & Spencer, T. E. (2011). Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino acids, 40, 1053–1063.

    CAS  PubMed  Google Scholar 

  • Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem., 372, 204–212.

    CAS  PubMed  Google Scholar 

  • Wu, J., & Gao, Y. (2015). Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev. Proteom., 12, 623–636.

    CAS  Google Scholar 

  • Yang, C., Ko, B., Hensley, Christopher T., Jiang, L., Wasti, Ajla T., Kim, J., Sudderth, J., Calvaruso, Maria A., Lumata, L., Mitsche, M., Rutter, J., Merritt, Matthew E., & DeBerardinis, Ralph J. (2014). Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell, 56, 414–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, L., Garcia Canaveras, J. C., Chen, Z., Wang, L., Liang, L., Jang, C., Mayr, J. A., Zhang, Z., Ghergurovich, J. M., Zhan, L., Joshi, S., Hu, Z., McReynolds, M. R., Su, X., White, E., Morscher, R. J., & Rabinowitz, J. D. (2020). Serine catabolism feeds NADH when respiration is impaired. Cell Metab., 31, 809-821.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yardeni, T., Tanes, C. E., Bittinger, K., Mattei, L. M., Schaefer, P. M., Singh, L. N., Wu, G. D., Murdock, D. G., & Wallace, D. C. (2019). Host mitochondria influence gut microbiome diversity: A role for ROS. Sci. Signal., 12, eaaw3159.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Horak and J. Coetzer for their assistance with the metabolomics analyses as well as K. Venter and A. Fick, from the Pre-Clinical Drug Development Platform (PCDDP, NWU, RSA), for their assistance regarding animal handling.

Funding

This work was supported by the National Research Foundation of South Africa (NRF, Grant No. 92736, 108146,111479 and 121368), the Technology Innovation Agency of the Department of Science and Technology of South Africa (TIA, Grant No. Metabol. 01), and the North-West University (NWU). Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF, TIA or NWU.

Author information

Authors and Affiliations

Authors

Contributions

KT and RL designed the research plan with input from JZL and FvdW. FvdW acquired the animal model and ethical approval with assistance from RL. RL and FvdW obtained funding for the study. KT performed the data processing with assistance from RL and JZL. KT analyzed the data and wrote the manuscript with input from RL, JZL and FvdW.

Corresponding author

Correspondence to Roan Louw.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The AnimCare animal research ethics committee of North-West University approved (NWU-0001-15-A5 and NWU-00378-16-A5) the animal protocols used in this study. All animals were maintained, and all procedures performed, in accordance with the code of ethics in research, training, and testing of drugs in South Africa and complied with national legislation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terburgh, K., Lindeque, J.Z., van der Westhuizen, F.H. et al. Cross-comparison of systemic and tissue-specific metabolomes in a mouse model of Leigh syndrome. Metabolomics 17, 101 (2021). https://doi.org/10.1007/s11306-021-01854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-021-01854-8

Keywords

Navigation